DEPARTMENT OF PHYSICS

BSc. (Hons.) Physics

Category-I

DISCIPLINE SPECIFIC CORE COURSE – 1 (DSC-1) Mathematical Physics I

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title P		Credit dis	stribution	of the course		Due veguiaite
Course the & Code	Credits Le		Tutorial	Practical/ Practice		of the course
Mathematical Physics I	4	3	0	1	Class XII pass with Physics and Mathematics as main subjects	Physics and Mathematics syllabus of class XII

Learning Objectives

The emphasis of the course is on applications in solving problems of interest to physicists. The course will teach the students to model a physics problem mathematically and then solve those numerically using computational methods. The course will expose the students to fundamental computational physics skills enabling them to solve a wide range of physics problems. The skills developed during course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

Learning Outcomes

After completing this course, student will be able to,

- Draw and interpret graphs of various elementary functions and their combinations.
- Understand the vector quantities as entities with Cartesian components which satisfy appropriate rules of transformation under rotation of the axes.
- Use index notation to write the product of vectors in compact form easily applicable in computational work.
- Solve first and second order differential equations and apply these to physics problems.
- Understand the functions of more than one variable and concept of partial derivatives.
- Understand the concept of scalar field, vector field, gradient of scalar field and divergence and curl of vector fields.
- Perform line, surface and volume integration and apply Green's, Stokes' and Gauss's theorems to compute these integrals and apply these to physics problems
- Understand the properties of discrete and continuous distribution functions.

In the laboratory course, the students will learn to,

- Prepare algorithms and flowcharts for solving a problem.
- Design, code and test simple programs in Python/C++ to solve various problems.

- Perform various operations of 1-d and 2-d arrays.
- Visualize data and functions graphically using Matplotlib/Gnuplot

SYLLABUS OF DSC – 1

THEORY COMPONENT

Unit 1

Hours)

Functions: Plotting elementary functions and their combinations, Interpreting graphs of functions using the concepts of calculus, Taylor's series expansion for elementary functions.

Ordinary Differential E quations: First order differential equations of degree one and those reducible to this form, Exact and Inexact equations, Integrating Factor, Applications to physics problems

Higher order linear homogeneous differential equations with constant coefficients, Wronskian and linearly independent functions. Non-homogeneous second order linear differential equations with constant coefficients, complimentary function, particular integral and general solution, Determination of particular integral using method of undetermined coefficients and method of variation of parameters, Cauchy-Euler equation, Initial value problems. Applications to physics problems

Unit 2

Hours)

Vector Algebra: Transformation of Cartesian components of vectors under rotation of the axes, Introduction to index notation and summation convention. Product of vectors - scalar and vector product of two, three and four vectors in index notation using δ_{ij} and ε_{ijk} (as symbols only – no rigorous proof of properties). Invariance of scalar product under rotation transformation.

Vector D ifferential C alculus: Functions of more than one variable, Partial derivatives, chain rule for partial derivatives. Scalar and vector fields, concept of directional derivative, the vector differential operator \vec{V} , gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field and their physical interpretation. Laplacian operator. Vector identities.

Unit 3

Hours)

Vector Integral Calculus: Integrals of vector-valued functions of single scalar variable. Multiple integrals, Jacobian, Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of vector fields. Flux of a vector field. Gauss divergence theorem, Green's and Stokes' Theorems (no proofs) and their applications

Probability D istributions: Discrete and continuous random variables, Probability distribution functions, Binomial, Poisson and Gaussian distributions, Mean and variance of these distributions.

(15

(12

(18

PRACTICAL COMPONENT Hours)

The aim of this lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics. The course will consist of practical sessions and lectures on the related theoretical aspects of the laboratory. Assessment is to be done not only on the programming but also on the basis of formulating the problem.

- Every student must perform at least 6 programs covering each unit.
- The list of recommended programs is suggestive only. Students should be encouraged to do more practice. Emphasis should be given to assess student's ability to formulate a physics problem as mathematical one and solve by computational methods.
- The implementation can be either in Python or C++. Accordingly, the instructor can choose section A or B respectively from Unit 1 and 2. The list of programs is common for both sections. If C++ is used, then for all plotting programs, Gnuplot has to be used.

Basics of scientific computing (Mandatory):

- (a) Binary and decimal arithmetic, Floating point numbers, single and double precision arithmetic, underflow and overflow, numerical errors of elementary floating point operations, round off and truncation errors with examples.
- (b) Introduction to Algorithms and Flow charts. Branching with examples of conditional statements, for and while loops.

Unit 1

Section A:

Basic Elements of Python: The Python interpreter, the print statement, comments, Python as simple calculator, objects and expressions, variables (numeric, character and sequence types) and assignments, mathematical operators. Strings, Lists, Tuples and Dictionaries, type conversions, input statement, list methods. List mutability, Formatting in the print statement.

Control S tructures: Conditional operations, if, if-else, if-elif-else, while and for loops, indentation, break and continue, List comprehension. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions, user-defined functions, local and global variables, passing functions, modules, importing modules, math module, making new modules. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers, etc., Generating pseudo random numbers.

OR

Section B:

Introduction to C++: Basic idea of Compilers. Structured programming. Idea of Headers, Data Types, Enumerated Data, Conversion and casting, constants and variables, Mathematical, Relational, Logical and Bit wise Operators. Precedence of Operators, Expressions and Statements, Scope and Visibility of Data, block, Local and Global variables, Auto, static and External variables. Input and output statements. I/O

manipulations, iostream and cmath header files, using namespace.

Control Statements: The if-statement, if-else statement, Nested if Structure, If - Else if – else block, Ternary operator, Goto statement, switch statement, Unconditional and Conditional looping, While loop, Do-while loop, For loop, nested loops, break and continue statements. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions. User-defined functions, function declaration, function definition, function prototype, void functions and function arguments, return statement. Local and global variables. The main function. Passing parameter by value and by reference. Inline functions. Function overloading. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers etc., Generating pseudo random numbers.

Recommended List of Programs (At least Two)

- (a) Make a function that takes a number N as input and returns the value of factorial of N. Use this function to print the number of ways a set of m red and n blue balls can be arranged.
- (b) Generate random numbers (integers and floats) in a given range and calculate area and volume of regular shapes with random dimensions.
- (c) Generate data for coordinates of a projectile and plot the trajectory. Determine the range, maximum height and time of flight for a projectile motion.

Unit 2

Section A:

NumPy Fundamentals: Importing Numpy, Difference between List and NumPy array, Adding, removing and sorting elements, creating arrays using ones(), zeros(), random(), arange(), linspace(). Basic array operations (sum, max, min, mean, variance), 2-d arrays, matrix operations, reshaping and transposing arrays, savetxt() and loadtxt().

Plotting with Matplotlib: matplotlib.pyplot functions, Plotting of functions given in closed form as well as in the form of discrete data and making histograms.

OR

Section B:

Arrays: Array definition, passing arrays to functions, Finding sum, maximum, minimum, mean and variance of given array. 2-d arrays, matrix operations (sum, product, transpose etc). Saving data generated by a C++ program in a file.

Gnuplot: Introduction to Gnuplot. Visualization of discrete data and plotting functions given in closed form and data for graphical visualization. Plotting data from the output file created by a C++ program, making histogram.

Recommended List of Programs (At least Three)

(a) To plot the displacement-time and velocity-time graph for the un-damped, under-damped

critically damped and over-damped oscillator using matplotlib (or Gnuplot) using given formulae.

- (b) To compute the left, right and central approximations for derivative of a function given in closed form. Plot both the function and derivative on the same graph. Plot (using matplotlib/Gnuplot) the error as a function of step size on a log-log graph, study the behaviour of the plot as step size decreases and hence discuss the effect of round off error.
- (c) To generate array of N random numbers drawn from a given distribution (uniform, binomial, poisson and gaussian) and plot them using matplotlib/Gnuplot for increasing N to verify the distribution. Verify the central limit theorem.
- (d) To implement the transformation of physical observables under Galilean, Lorentz and Rotation transformation

Unit 3

Recommended List of Programs (At least one)

- (a) To find value of π and to integrate a given function using acceptance-rejection method.
- (b) To perform linear fitting of data using the inbuilt function scipy.stats.linregress in Python or using Gnuplot. Plot the data points and the fitted line on the same graph.

References (for Laboratory Work):

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- **3)** Schaum's Outline of Programming with C++, J. Hubbard, 2000, McGraw-Hill Education.
- 4) C++ How to Program, Paul J. Deitel and Harvey Deitel, Pearson (2016).
- 5) Computational Physics, Darren Walker, 1st Edn., Scientific International Pvt. Ltd (2015).
- 6) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edn., 2007, Wiley India Edition.
- 7) An Introduction to Computational Physics, T. Pang, Cambridge University Press (2010).
- 8) Introduction to Numerical Analysis, S. S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- 9) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, India (2007).

Essential/Recommended Readings

REFERENCES FOR THEORY COMPONENT

- 1) An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.
- 2) Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 3) Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book.
- 4) Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.

- 5) Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- 6) Probability and Statistics, Murray R Spiegel, John J Schiller and R Alu Srinivasan, 2018, McGraw Hill Education Private Limited.
- 7) Essential Mathematical Methods, K.F.Riley and M.P.Hobson, 2011, Cambridge Univ. Press.
- 8) Vector Analysis and Cartesian Tensors, D.E. Bourne and P.C. Kendall, 3 Ed., 2017, CRC Press.
- 9) Vector Analysis, Murray Spiegel, 2 Ed., 2017, Schaum's outlines series.
- **10)** John E. Freund's Mathematical Statistics with Applications, I. Miller and M. Miller, 7th Ed., 2003, Pearson Education, Asia.

.Suggestive readings:

- 1) Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 7 Ed., 2013, Elsevier.
- **2)** Introduction to Electrodynamics, Chapter 1, David J. Griffiths, 4 Ed., 2017, Cambridge University Press.
- **3)** The Feynman Lectures on Physics, Volume II, Feynman, Leighton and Sands, 2008, Narosa Publishing House.
- 4) Introduction to Vector Analysis, Davis and Snider, 6 Ed., 1990, McGraw Hill.
- 5) Differential Equations, R. Bronson and G.B. Costa, Schaum's outline series.
- 6) Mathematical Physics, A.K. Ghatak, I.C. Goyal and S.J. Chua, Laxmi Publications Private Limited (2017)
- 7) Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.

DISCIPLINE SPECIFIC CORE COURSE – 2 (DSC - 2) MECHANICS

Course title Credit di		listributio	on of the course		Due requisite of	
& Code	Credits	Lecture	Tutorial	Practical/ Practice	Eligibility criteria	the course
Mechanics	Δ	3	0	1	Class XII pass with Physics and	Physics and Mathematics
DSC – 2	-	5	U	I	Mathematics as main subjects	syllabus of class XII

Credit distribution, Eligibility and Prerequisites of the Course

Learning Objectives

This course reviews the concepts of mechanics learnt at school from a more advanced perspective and goes on to build new concepts. It begins with Newton's Laws of Motion and ends with the Fictitious Forces and Special Theory of Relativity. The students will learn the collisions in the centre of mass frame, rotational motion and central forces. They will be able to apply the concepts learnt to several real world problems. In the laboratory part of the course, the students will learn to use various instruments, estimate the error for

every experiment performed and report the result of experiment along with the uncertainty in the result up to correct significant figures.

Learning Outcomes

Upon completion of this course, students will be able to,

- Learn the Galilean invariance of Newton's laws of motion.
- Understand translational and rotational dynamics of a system of particles.
- Apply Kepler's laws to describe the motion of planets and satellite in circular orbit.
- Understand Einstein's postulates of special relativity.
- Apply Lorentz transformations to describe simultaneity, time dilation and length contraction
- Use various instruments for measurements and perform experiments related to rotational dynamics, elastic properties, fluid dynamics, acceleration due to gravity, collisions, etc.
- Use propagation of errors to estimate uncertainty in the outcome of an experiment and perform the statistical analysis of the random errors in the observations.

SYLLABUS OF DSC-2

THEORY COMPONENT

Unit 1:

Fundamentals of Dynamics: Inertial and Non-inertial frames, Newton's Laws of Motion and their invariance under Galilean transformations. Momentum of variable mass system: motion of rocket. Dynamics of a system of particles. Principle of conservation of momentum. Impulse. Determination of Centre of Mass of discrete and continuous objects having cylindrical and spherical symmetry. Differential analysis of a static vertically hanging massive rope

Work and Energy: Work and Kinetic Energy Theorem. Conservative forces and examples (Gravitational and electrostatic), non-conservative forces and examples (velocity dependent forces e.g. frictional force, magnetic force), Potential Energy. Energy diagram. Stable, unstable and neutral equilibrium. Force as gradient of the potential energy. Work done by non-conservative forces.

Collisions: Elastic and inelastic collisions between two spherical bodies. Kinematics of 2 \rightarrow 2 scattering in centre of mass and laboratory frames.

Unit 2:

(12 Hours)

Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Determination of moment of inertia of symmetric rigid bodies (rectangular, cylindrical and spherical) using parallel and perpendicular axes theorems. Kinetic energy of rotation. Motion involving both translation and rotation.

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Centrifugal force. Coriolis force and its applications.

Unit 3:

(7 Hours)

Central Force Motion: Central forces, Law of conservation of angular momentum for

(14 Hours)

central forces, Two-body problem and its reduction to equivalent one-body problem and its solution. Concept of effective potential energy and stability of orbits for central potentials of the form kr^n for n = 2 and -1 using energy diagram, discussion on trajectories for n=-2. Solution of the Kepler Problem, Kepler's Laws for planetary motion, orbit for artificial satellites

Unit 4:

(12 Hours)

Relativity: Postulates of Special Theory of Relativity, Lorentz Transformations, simultaneity, length contraction, time dilation, proper length and proper time, life time of a relativistic particle (for example muon decay time and decay length). Space-like, time-like and light-like separated events, relativistic transformation of velocity and acceleration, variation of mass with velocity, mass-energy equivalence, transformation of energy and momentum.

PRACTICAL COMPONENT (30 Hours)

Introductory Concepts and related activities (Mandatory)

• Use of Basic Instruments

Determination of least count and use of instruments like meter scale, vernier callipers, screw gauge and travelling microscope for measuring lengths.

- Errors
- (a) Types of errors in measurements (instrumental limitations, systematic errors and random errors), accuracy and precision of observations, significant figures.
- (b) Introduction to error estimation, propagation of errors and reporting of results along with uncertainties with correct number of significant figures.
- (c) Statistical analysis of random errors, need for making multiple observations, standard error in the mean as estimate of the error.
- Graph Plotting

Pictorial visualisation of relation between two physical quantities, Points to be kept in mind while plotting a graph manually.

• Data Analysis

Principle of least square fitting (LSF) and its application in plotting linear relations, estimation of LSF values of slope, intercept and uncertainties in slope and intercept.

Mandatory Activities

- Determine the least count of meter scale, vernier callipers, screw gauge and travelling microscope, use these instruments to measure the length of various objects multiple time, find the mean and report the result along with the uncertainty up to appropriate number of significant digits.
- Take multiple observations of the quantities like length, radius etc. for some spherical, cylindrical and cubic objects, find mean of these observations and use them to

determine the surface area and volume of these objects. Estimate the uncertainties in the outcome using law of propagation of errors. Report the result to appropriate number of significant figures.

• Given a data (x, y) corresponding to quantities x and y related by a relation y = f(x) that can be linearised, plot the data points (manually) with appropriate choice of scale, perform least square fitting to determine the slope and intercept of the LSF line and use them to determine some unknown quantity in the relation. Determine the uncertainties in slope and intercept and use these to estimate the uncertainty in the value of unknown quantity.

Every student must perform at least 4 experiments from the following list.

- 1) To study the random errors in observations. It is advisable to keep observables of the order of least count of the instruments.
- 2) To determine the moment of inertia of a symmetric as well as asymmetric flywheel
- 3) To determine coefficient of viscosity of water by Capillary Flow Method (Poiseuille's method).
- 4) To determine g and velocity for a freely falling body using Digital Timing Technique.
- 5) To determine the Young's Modulus of a Wire by Optical Lever Method.
- 6) To determine the vertical distance between two given points using sextant.
- 7) To determine the coefficients of sliding and rolling friction experienced by a trolley on an inclined plane.
- 8) To verify the law of conservation of linear momentum in collisions on air track.

Suggested additional activities:

- 1) Virtual lab collision experiments on two dimensional elastic and inelastic collisions (for example available on following suggested links
 - a) https://archive.cnx.org/specials/2c7acb3c-2fbd-11e5-b2d9-e7f92291703c/collision-lab/#sim-advanced-sim)
 - b) https://phet.colorado.edu/en/simulations/collision-lab
- 2) Amrita Virtual Mechanics Lab: https://vlab.amrita.edu/?sub=1&brch=74

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worshnop, 1971, Asia Publishing House.
- **2)** Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- **4)** A Text Book of Practical Physics, Vol I, Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- **5)** An introduction to Error Analysis: The study of uncertainties in Physical Measurements, J.

R. Taylor, 1997, University Science Books

Essential readings:

FOR THEORY COMPONENT

- 1) An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- **2)** Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education
- 3) Classical Mechanics by Peter Dourmashkin, 2013, John Wiley and Sons.
- **4)** Theory and Problems of Theoretical Mechanics, Murray R. Spiegel, 1977, McGraw Hill Education.
- **5)** Introduction to Classical Mechanics With Problems and Solutions, David Morin, 2008, Cambridge University Press.
- 6) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 7) Introduction to Special Relativity, Robert Resnick, 2007, Wiley.

Suggestive Link:

https://phys.libretexts.org/Bookshelves/Classical_Mechanics/classical_Mechanics_(Dourm ash kin)/

Suggestive readings:

- 1) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- **3)** Classical Mechanics, H. Goldstein, C. P. Poole, J. L. Safko, 3/e, 2002, Pearson Education.
- 4) Newtonian Mechanics, A.P. French, 2017, Viva Books.

DISCIPLINE SPECIFIC CORE COURSE- 3 (DSC - 3) WAVES AND OSCILLATIONS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title		Credit di	stribution	of the course	Fligibility	Due neguisite of
& Code	Credits	Lecture	e Tutorial Practical/ Practice		criteria	the course
Waves and					Class XII pass	Physics and
Oscillations	4	n	0	2	with Physics and	Mathematics
	4	<u>L</u>			Mathematics as	syllabus of class
DSC – 3					main subjects	XII

Learning Objectives

This course reviews the concepts of waves and oscillations learnt at school from a more advanced perspective and goes on to build new concepts. It begins with explaining ideas of free oscillations and superposition of harmonic motion leading to physics of damped and forced oscillations. The course will also introduce students to coupled oscillators, normal

modes of oscillations and free vibrations of stretched strings. Concurrently, in the laboratory component of the course students will perform experiments that expose them to different aspects of real oscillatory systems.

Learning Outcomes

On successful completion of this course, the students will have the skill and knowledge to,

- Understand simple harmonic motion
- Understand superposition of N collinear harmonic oscillations
- Understand superposition of two perpendicular harmonic oscillations
- Understand free, damped and forced oscillations
- Understand coupled oscillators and normal modes of oscillations
- Understand travelling and standing waves, stretched strings

SYLLABUS OF DSC - 3

THEORY COMPONENT

Unit 1: Simple Harmonic Motion Hours)

Differential equation of simple harmonic oscillator, its solution and characteristics, energy in simple harmonic motion, linearity and superposition principle, rotating vector representation of simple harmonic oscillation, motion of simple and compound pendulum (Bar and Kater's pendulum), loaded spring.

Superposition of N collinear harmonic oscillations with (1) equal phase differences and (2) equal frequency differences, Beats

Superposition of two perpendicular harmonic oscillations: Graphical and Analytical Methods. Lissajous Figures with equal and unequal frequencies, effect of variation of phase

Unit 2: Damped and Forced Oscillations Hours)

Damped Oscillations: Equation of motion, dead beat motion, critically damped system, lightly damped system: relaxation time, logarithmic decrement, quality factor

Forced Oscillations: Equation of motion, complete solution, steady state solution, resonance, sharpness of resonance, power dissipation, quality factor

Unit 3: Coupled Oscillations

Hours)

Coupled oscillators, normal coordinates and normal modes, energy relation and energy transfer, di-atomic molecules, representation of a general solution as a linear sum of normal modes, normal modes of N coupled oscillators.

Unit 4: Wave Motion

Hours)

One dimensional plane wave, classical wave equation, standing wave on a stretched string (both ends fixed), normal modes. Travelling wave solution

(12

(6

(8

(4

PRACTICAL COMPONENT (60 Hours)

Every student must perform at least 5 experiments

- 1) Experiments using bar pendulum:
 - a) Estimate limits on angular displacement for SHM by measuring the time period at different angular displacements and compare it with the expected value of time period for SHM.
 - **b)** Determine the value of g using bar pendulum.
 - c) To study damped oscillations using bar pendulum
 - **d)** Study the effect of area of the damper on damped oscillations. Plot amplitude as a function of time and determine the damping coefficient and Q factor for different dampers.
- 2) To determine the value of acceleration due to gravity using Kater's pendulum for both the cases (a) $T_1 \approx T_2$ and (b) $T_1 \neq T_2$ and discuss the relative merits of both cases by estimation of error in the two cases.
- **3)** Understand the applications of CRO by measuring voltage and time period of a periodic waveform using CRO. And study the superposition of two perpendicular simple harmonic oscillations using CRO (Lissajous figures)
- 4) Experiments with spring and mass system
 - a) To calculate g, spring constant and mass of a spring using static and dynamic methods.
 - **b)** To calculate spring constant of series and parallel combination of two springs.
- 5) To study normal modes and beats in coupled pendulums or coupled springs.
- 6) To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify $\lambda^2 T$ Law.
- 7) To determine the current amplitude and phase response of a driven series LCR circuit with driving frequency and resistance. Draw resonance curves and find quality factor for low and high damping.

References (For Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- **2)** Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- **4)** A Text Book of Practical Physics, Vol I and II, Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) An Introduction to Error Analysis: The study of uncertainties in Physical Measurements,
- J. R. Taylor, 1997, University Science Books List of experiments

Essential Readings:

FOR THEORY COMPONENT

1) Vibrations and Waves by A. P. French. (CBS Pub. and Dist., 1987)

- 2) The Physics of Waves and Oscillations by N.K. Bajaj (Tata McGraw-Hill, 1988)
- 3) Fundamentals of Waves and Oscillations By K. Uno Ingard (Cambridge University Press, 1988)
- **4)** An Introduction to Mechanics by Daniel Kleppner, Robert J. Kolenkow (McGraw-Hill, 1973)
- **5)** Waves: BERKELEY PHYSICS COURSE by Franks Crawford (Tata McGrawHill, 2007).
- 6) Classical Mechanics by Peter Dourmashkin, John Wiley and Sons
- 7) https://phys.libretexts.org/Bookshelves/Classical_Mechanics/classical_Mechanics_(Dou r mashkin)

Suggestive Readings:

- 1) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 2) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 3) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.

BSc. Physical Sciences

Multidisciplinary

DISCIPLINE SPECIFIC CORE COURSE – 1 (PHYSICS DSC - 1) MECHANICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Constitut	Credi	t distribu course	tion of the e	Eligibility	Pre-requisite	
& Code	& Code		Tutorial	Practical/ Practice	criteria	of the course	
Mechanics	4	2	0	2	Class XII pass with Physics and	Physics and Mathematics	
Physics DSC 1	-	-	U	2	Mathematics as main subjects	syllabus of class XII	

Learning Objectives

This course reviews the concepts of mechanics learnt at school from a more advanced perspective and goes on to build new concepts. It begins with dynamics of a system of particles and ends with the special theory of relativity. Students will appreciate the concept of rotational motion, gravitation and oscillations. The students will be able to apply the concepts learnt to several real world problems.

Learning outcomes:

Upon completion of this course, students are expected to understand the following concepts.

- Laws of motion and their application to various dynamical situations.
- Conservation of momentum, angular momentum and energy. Their application to basic problems.
- Particle collision (elastic and in-elastic collisions)
- Motion of simple pendulum
- Postulates of special theory of relativity, inertial and non-inertial frame of reference and their transformation, relativistic effects on the mass and energy of a moving body.

In the laboratory course, after acquiring knowledge of how to handle measuring instruments (like screw gauge, vernier calliper and travelling microscope) student shall embark on verifying various principles and associated measurable quantities.

SYLLABUS OF PHYSICS DSC – 1

THEORY COMPONENT

Unit 1: Review of vectors and ordinary differential equation

Gradient of a scalar field, divergence and curl of vectors field, polar and axial vectors Second order homogeneous ordinary differential equations with constant coefficients (Operator Method Only).

Unit 2: Fundamentals of Dynamics

Dynamics of a system of particles, centre of mass, determination of centre of mass for discrete and continuous systems having spherical symmetry

Conservation of momentum and energy, Conservative and non-Conservative forces, work – energy theorem for conservative forces, force as a gradient of potential energy. Particle collision (Elastic and in-elastic collisions)

Unit 3: Rotational Dynamics and Oscillatory Motion

Angular momentum, torque, conservation of angular momentum, Moment of inertia, Theorem of parallel and perpendicular axes (statements only). Calculation of moment of inertia of discrete and continuous objects (1-D and 2-D).

Idea of simple harmonic motion, differential equation of simple harmonic motion and its solution, Motion of simple pendulum, damped harmonic oscillator

Unit 4: Gravitation

Newton's Law of Gravitation, Motion of a particle in a central force field, Kepler's Laws (statements only)

Unit 5: Special Theory of Relativity

(8 Hours) Frames of reference, Galilean transformations, inertial and non-inertial frames, Michelson Morley's Experiment, postulates of special theory of relativity, length contraction, time dilation, relativistic transformation of velocity, relativistic variation of mass.

References:

Essential Readings:

- 1) Vector Analysis Schaum's Outline, M.R. Spiegel, S. Lipschutz, D. Spellman, 2nd Edn., 2009, McGraw-Hill Education.
- 2) An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- 3) Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education
- 4) Mechanics, D. S. Mathur, P. S. Hemne, 2012, S. Chand.
- 5) Intermediate Dynamics, Patrick Hamill, 2010, Jones and Bartlett Publishers.

Additional Readings:

- 1) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 3) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- 4) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 5) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press.
- 6) Physics for Scientists and Engineers, Randall D Knight, 3/e, 2016, Pearson Education.

(8 Hours)

(4 Hours)

(7 Hours)

(3 Hours)

PRACTICAL COMPONENT (60 Hours)

The teacher is expected to give basic idea and working of various apparatus and instruments related to different experiments. Students should also be given knowledge of recording and analysing experimental data.

Every student should perform at least 06 experiments from the following list.

- 1) Measurement of length (or diameter) using vernier calliper, screw gauge and travelling microscope.
- 2) Study the random error in observations.
- 3) Determination of height of a building using a sextant.
- 4) Study of motion of the spring and calculate (a) spring constant and, (b) acceleration due to gravity
- 5) Determination of moment of inertia of a flywheel.
- 6) Determination of g and velocity for a freely falling body using digital timing technique.
- 7) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 8) Determination of elastic constants of a wire by Searle's method.
- 9) Determination of value of g using bar pendulum.
- 10) Determination of value of g using Kater's pendulum.

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A Textbook of Practical Physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. Practical Physics, Geeta Sanon, R. Chand and Co., 2016.

BSc. Physical Sciences with Electronics

Multidisciplinary

DISCIPLINE SPECIFIC CORE COURSE – 1 (PHYSICS DSC - 1) MECHANICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &		Credit di	stribution	of the course	Fligibility	Dra raquisita of
Code	Credits	Lecture	Tutorial	Practical/ Practice	criteria	the course
Mechanics	4	2	0	2	Class XII pass with Physics and	Physics and Mathematics
Physics DSC 1	•	-	5	-	Mathematics as main subjects	syllabus of class XII

Learning Objectives

This course reviews the concepts of mechanics learnt at school from a more advanced perspective and goes on to build new concepts. It begins with dynamics of a system of particles and ends with the special theory of relativity. Students will appreciate the concept of rotational motion, gravitation and oscillations. The students will be able to apply the concepts learnt to several real world problems.

Learning Outcomes

Upon completion of this course, students are expected to understand the following concepts.

- Laws of motion and their application to various dynamical situations.
- Conservation of momentum, angular momentum and energy. Their application to basic problems.
- Particle collision (elastic and in-elastic collisions)
- Motion of simple pendulum
- Postulates of special theory of relativity, inertial and non-inertial frame of reference and their transformation, relativistic effects on the mass and energy of a moving body.

In the laboratory course, after acquiring knowledge of how to handle measuring instruments (like screw gauge, vernier calliper and travelling microscope) student shall embark on verifying various principles and associated measurable quantities.

SYLLABUS OF PHYSICS DSC-1

THEORY COMPONENT

Unit 1: Review of vectors and ordinary differential equation

Hours)

Gradient of a scalar field, divergence and curl of vectors field, polar and axial vectors Second order homogeneous ordinary differential equations with constant coefficients (Operator Method Only).

Unit 2: Fundamentals of Dynamics

Dynamics of a system of particles, centre of mass, determination of centre of mass for discrete and continuous systems having spherical symmetry

Conservation of momentum and energy, Conservative and non-Conservative forces, work – energy theorem for conservative forces, force as a gradient of potential energy. Particle collision (Elastic and in-elastic collisions)

Unit 3: Rotational Dynamics and Oscillatory Motion

Angular momentum, torque, conservation of angular momentum, Moment of inertia, Theorem of parallel and perpendicular axes (statements only). Calculation of moment of inertia of discrete and continuous objects (1-D and 2-D).

Idea of simple harmonic motion, differential equation of simple harmonic motion and its solution, Motion of simple pendulum, damped harmonic oscillator

Unit 4: Gravitation

Newton's Law of Gravitation, Motion of a particle in a central force field, Kepler's Laws (statements only)

Unit 5: Special Theory of Relativity

Hours)

Frames of reference, Galilean transformations, inertial and non-inertial frames, Michelson Morley's Experiment, postulates of special theory of relativity, length contraction, time dilation, relativistic transformation of velocity, relativistic variation of mass.

References:

Essential Readings:

- 1) Vector Analysis Schaum's Outline, M.R. Spiegel, S. Lipschutz, D. Spellman, 2nd Edn., 2009, McGraw- Hill Education.
- 2) An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- **3)** Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education
- 4) Mechanics, D. S. Mathur, P. S. Hemne, 2012, S. Chand.
- 5) Intermediate Dynamics, Patrick Hamill, 2010, Jones and Bartlett Publishers.

Additional Readings:

- 1) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 3) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- 4) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 5) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press.
- 6) Physics for Scientists and Engineers, Randall D Knight, 3/e, 2016, Pearson Education.

(03 Hours)

(08

(07 Hours)

(08 Hours)

(04

PRACTICAL COMPONENT (60 Hours)

The teacher is expected to give basic idea and working of various apparatus and instruments related to different experiments. Students should also be given knowledge of recording and analysing experimental data.

Every student should perform at least 06 experiments from the following list.

- 1) Measurement of length (or diameter) using vernier calliper, screw gauge and travelling microscope.
- 2) Study the random error in observations.
- 3) Determination of height of a building using a sextant.
- 4) Study of motion of the spring and calculate (a) spring constant and, (b) acceleration due to gravity
- 5) Determination of moment of inertia of a flywheel.
- 6) Determination of g and velocity for a freely falling body using digital timing technique.
- 7) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 8) Determination of elastic constants of a wire by Searle's method.
- 9) Determination of value of g using bar pendulum.
- 10) Determination of value of g using Kater's pendulum.

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A Textbook of Practical Physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. Practical Physics, Geeta Sanon, R. Chand and Co., 2016.

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

DISCIPLINE SPECIFIC CORE COURSE – 2 (DSC - 2) Network Analysis and Analog Electronics

Course title 8-		Credit dis	stribution	of the course	Flightity	Due neguisite of
Code	Credits	Lecture	Tutorial	Practical/ Practice	criteria	the course
Network Analysis and Analog Electronics Physics DSC 2	4	2	0	2	Class XII pass with Physics and Mathematics as main subjects	Physics and Mathematics syllabus of class XII

Learning Objectives

This course offers the basic knowledge to students to design and analyse the network circuit analysis and analog electronics. It gives the concept of voltage, current sources and various electrical network theorems, physics of semiconductor devices including junction diode, bipolar junction transistors, unipolar devices and their applications are discussed in detail. This also develops the understanding of amplifier and its applications.

Learning Outcomes

At the end of this course, students will be able to achieve the following learning outcomes.

- To understand the concept of voltage and current sources, Network theorems, Mesh Analysis.
- To develop an understanding of the basic operation and characteristics of different type of diodes and familiarity with its working and applications.
- Become familiar with Half-wave, Full-wave centre tapped and bridge rectifiers. To be able to calculate ripple factor and efficiency.
- To be able to recognize and explain the characteristics of a PNP or NPN transistor. •
- Become familiar with the load-line analysis of the BJT configurations and understand the hybrid model (h- parameters) of the BJT transistors.
- To be able to perform small signal analysis of Amplifier and understand its • classification.
- To be able to perform analysis of two stage R-C coupled Amplifier. •
- To understand the concept of positive and negative feedback along with applications in case of oscillators.
- To become familiar with construction, working and characteristics of JFET and UJT.

SYLLABUS OF PHYSICS DSC – 2

THEORY COMPONENT

Unit 1:

(8 Hours) Circuit Analysis: Concept of Voltage and Current Sources (ideal and practical). Kirchhoff's Laws. Mesh Analysis, Node Analysis. Star and Delta networks and their Conversion Superposition Theorem. Thevenin's Theorem. Norton's Theorem. Reciprocity Theorem. Maximum Power Transfer Theorem.

Unit 2:

Semiconductor Diode: PN junction diode (Ideal and practical), Diode equation (Qualitative only) and I-V characteristics. Idea of static and dynamic resistance, Zener diode working. Rectifiers: Half wave rectifier (Qualitative only), Full wave rectifiers (center tapped and bridge): circuit diagrams, working and waveforms, ripple factor and efficiency. Filter circuits: Shunt capacitance and series Inductance filter (no derivation).

Regulation: Zener diode as voltage regulator for load and line regulation.

Unit 3:

(7 Hours)

(5 Hours)

Bipolar Junction Transistor: Review of the characteristics of transistor in CE and CB configurations, Regions of operation (active, cut off and saturation), Current gains α and β . Relations between α and β . dc load line and Q point.

80

Amplifiers: Transistor biasing and Stabilization circuits - Voltage Divider Bias. Thermal runaway, stability (Qualitative only). Transistor as a two-port network, h-parameter equivalent circuit. Small signal analysis of single stage CE amplifier. Input and Output impedance, Current and Voltage gains. Class A, B and C Amplifiers.

Unit 4:

Hours)

Cascaded Amplifiers: Two stage RC Coupled Amplifier and its frequency response.

Sinusoidal Oscillators: Concept of feedback (negative and positive feedback), Barkhausen criterion for sustained oscillations. Phase shift and Colpitt's oscillator. Determination of frequency and condition of oscillation

Unipolar Devices: JFET. Construction, working and I-V characteristics (output and transfer), Pinch-off voltage. UJT, basic construction, working, equivalent circuit and I-V characteristics. UJT Oscillator.

References:

Essential Readings:

- 1) Network, Lines and Fields, J. D. Ryder, Prentice Hall of India
- 2) Integrated Electronics, J. Millman and C.C. Halkias, Tata Mcgraw Hill (2001)
- 3) Electric Circuits, S. A. Nasar, Schaum Outline Series, Tata McGraw Hill (2004)
- 4) Electric Circuits, K.A. Smith and R. E. Alley, Cambridge University Press(2014)
- 5) 2000 Solved Problems in Electronics, J. J. Cathey, Schaum Outline Series, Tata McGraw Hill (1991)

Additional Readings:

- 1) Microelectronic Circuit, A. S. Sedra, K.C. Smith, A. N. Chandorkar, 6th Edition (2014), Oxford University Press
- 2) Electronic Circuits: Discreet and Integrated, D. L. Schilling and C. Belove, Tata McGraw Hill.
- **3)** Electronic Devices and Circuits, David A. Bell, 5th Edition 2015, Oxford University Press.
- 4) Electrical Circuits, M. Nahvi and J. Edminister, Schaum Outline Series, Tata McGraw Hill (2005)

PRACTICAL COMPONENT (60 Hours)

At least 06 experiments from the following.

- 1) To familiarize with basic electronic components (R, L, C, diodes, transistors), digital Multimeter, Function Generator and Oscilloscope
- 2) Verification of
 - a. Thevenin's theorem and
 - b. Norton's theorem.
- 3) Verification of
 - a. Superposition Theorem and
 - b. Reciprocity Theorem
- 4) Verification of the Maximum Power Transfer Theorem.
- 5) Study of the I-V Characteristics of
 - a. p-n junction Diode, and
 - b. Zener diode.

(10

- 6) Study of
 - a. Half wave rectifier and
 - b. Full wave rectifier (FWR).
- 7) Study the effect of
 - a. C- filter and L- filter and
 - b. Zener regulator.
- 8) Study of the I-V Characteristics of UJT and design relaxation oscillator.
- 9) Study of the output and transfer I-V characteristics of common source JFET.
- 10) Study of Voltage divider bias configuration for CE transistor.
- 11) Design of a Single Stage CE amplifier of given gain.
- 12) Study of the RC Phase Shift Oscillator.

References (For Laboratory Work):

- 1) Electronic Devices and Circuits, Allen Mottershead, Goodyear Publishing Corporation.
- 2) Electrical Circuits, M. Nahvi and J. Edminister, Schaum Outline Series, Tata McGraw Hill (2005)
- 3) Network, Lines and Fields, J. D. Ryder, Prentice Hall of India
- 4) Integrated Electronics, J. Millman and C.C. Halkias, Tata Mcgraw Hill (2001)

BSc. (HONOURS) IN ANALYTICAL CHEMISTRY & IN INDUSTRIAL CHEMISTRY Multidisciplinary

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title		Credit di	stribution	of the course	Fligibility	Pre-requisite of
& Code	Credits	Lecture Tutorial Practical/ Practice Criteria		criteria	the course (if any)	
Mechanics	4	2	0	2	Class XII pass with Physics and Mathematics as	Physics and Mathematics syllabus of class
DSC - 1					main subjects	XII

Learning Objectives

This course reviews the concepts of mechanics learnt at school from a more advanced perspective and goes on to build new concepts. It begins with a review of vector algebra and ordinary differential equations. The students will learn Newton's laws of motion, conservation of momentum, conservation of energy, concept of simple harmonic motion, Newton's laws of gravitation, elasticity and the Special Theory of Relativity. They will be able to apply the concepts learnt to several real world problems.

Learning Outcomes

Upon completion of this course, students will be able to,

- Learn the laws of motion and their application to various dynamical situations.
- Understand the concept of conservation of momentum, angular momentum and energy. Their application to basic problems.
- Understand the motion of simple pendulum
- Understand the laws of gravitation and basic idea of global positioning system
- Understand the elastic properties
- Postulates of special theory of relativity, inertial and non-inertial frame of reference and their transformation, relativistic effects on the mass and energy of a moving body.

SYLLABUS OF DSC – 1

Vectors: Review of vector algebra. Scalar and vector product

(2 Hours)

Ordinary Differential Equations: First order homogeneous differential equations, second order homogeneous differential equation with constant coefficients

(4 Hours)

Brief review of Newton's laws of motion, dynamics of a system of particles, centre of mass, determination of centre of mass for continuous systems having spherical symmetry. Conservation of momentum and energy, work – energy theorem for conservative forces,

force as a gradient of potential energy, angular momentum, torque, conservation of angular momentum

(9 Hours)

Idea of simple harmonic motion, differential equation of simple harmonic motion and its solution, kinetic energy and potential energy, total energy and their time average for a body executing simple harmonic motion

(4 Hours)

Newton's law of gravitation, motion of a particle in a central force field, Kepler's laws, weightlessness, geosynchronous orbit, basic idea of global positioning system

(4 Hours)

Elasticity: Concept of stress and strain, Hooke's law, elastic moduli, twisting torque on awire, tensile strength, relation between elastic constants, Poisson's ratio, rigidity modulus

(3 Hours)

Postulates of special theory of relativity, Lorentz transformation relations, length contraction, time dilation, relativistic transformation of velocity

(4 Hours)

PRACTICAL COMPONENT (60 Hours)

Every student should perform at least 06 experiments from the following list.

- 1) Measurements of length (or diameter) using vernier calliper, screw gauge and travellingmicroscope.
- 2) Determination of height of a building using a sextant.
- **3)** Study of motion of the spring and calculate (a) spring constant and, (b) acceleration dueto gravity (g)
- 4) Determination of moment of inertia of a flywheel.
- 5) Determination of Young's modulus of a wire by Optical Lever Method.
- 6) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 7) Determination of elastic constants of a wire by Searle's method.
- 8) Determination of value of g using bar pendulum.
- 9) Determination of value of g using Kater's pendulum.

References (for Laboratory Work):

- 1) Advanced practical physics for students, B. L. Flint and H. T. Worsnop, 1971, AsiaPublishing House.
- 2) Engineering practical physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India
- 3) Practical physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A text book of practical physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. practical physics, Geeta Sanon, R. Chand, 2016

Essential Readings:

FOR THEORY COMPONENT

- 1) Schaum's Outline of Vector Analysis, 2nd Edn., Murray Spiegel, Seymour Lipschutz, Tata McGraw-Hill, (2009)
- 2) An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- 3) Mechanics Berkeley Physics Course, Vol. 1, 2/e, Charles Kittel, et. al., 2017, McGrawHill Education
- 4) Mechanics, D. S. Mathur and P. S. Hemne, 2012, S. Chand.

.Suggestive Readings:

- 1) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 2) University Physics, H. D. Young and R. A. Freedman, 14/e, 2015, Pearson Education.
- 3) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.
- 4) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press.

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES Offered by Department of Physics *Category-IV*

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

Note: E xamination s cheme a nd m ode s hall be a s pr escribed by t he E xamination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES (GE – 1): MECHANICS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title		Credit dis	stribution a	of the course	Eligibility	Pre-	Department
& Code	Credits	Lecture	Tutorial	Practical/ Practice	criteria	requisite of the course	offering the course
Mechanics GE 1	4	3	0	1	Class XII pass	NIL	Physics and Astrophysics

Learning Objectives

This course reviews the concepts of mechanics learnt at school in a more advanced perspective and goes on to build new concepts. It begins with dynamics of a system of particles and ends with the special theory of relativity. Students will appreciate the concept of rotational motion, gravitation and oscillations. The students will be able to apply the concepts learnt to several real world problems. A brief recapitulation of vector algebra and differential equations is also done to familiarize students with basic mathematical concepts which are necessary for a course on mechanics.

Learning Outcomes

Upon completion of this course, students are expected to understand the following concepts.

- Laws of motion and their application to various dynamical situations. And their applications to conservation of momentum, angular momentum and energy.
- Motion of a simple and compound pendulum
- Application of Kepler's laws to describe the motion of satellites in circular orbit.
- The concept of geosynchronous orbits
- Concept of stress and strain and relation between elastic constants
- Postulates of Special Theory of Relativity, Lorentz transformation, relativistic effects on the mass and energy of a moving body.
- In the laboratory course, after acquiring knowledge of how to handle measuring

instruments (like vernier calliper, screw gauge and travelling microscope) student shall embark on verifying various principles and associated measurable quantities.

SYLLABUS OF GE - 1

THEORY COMPONENT

Unit 1: Recapitulation of Vectors and Ordinary Differential Equation (8 Hours)

Vector algebra, scalar and vector product, gradient of a scalar field, divergence and curl of vectors field

Ordinary Differential Equations: First order homogeneous differential equations, second order homogeneous differential equation with constant coefficients

Unit 2: Fundamentals of Dynamics Hours)

Review of Newton's laws of motion, dynamics of a system of particles, centre of mass, determination of centre of mass for discrete and continuous systems having spherical symmetry, Conservation of momentum and energy, Conservative and non-Conservative forces, work - energy theorem for conservative forces, force as a gradient of potential energy.

Unit 3: Rotational Dynamics and Oscillatory Motion (14 Hours)

Angular velocity, angular momentum, torque, conservation of angular momentum, Moment of inertia, Theorem of parallel and perpendicular axes, Calculation of moment of inertia of discrete and continuous objects (1-D and 2-D).

Idea of simple harmonic motion, Differential equation of simple harmonic motion and its solution, Motion of a simple pendulum and compound pendulum

Unit 4: Gravitation

Hours)

Newton's Law of Gravitation, Motion of a particle in a central force field, Kepler's Laws (statements only), Satellite in circular orbit and applications, geosynchronous orbits

Unit 5: Elasticity

Hours)

Concept of stress and strain, Hooke's law, elastic moduli, twisting torque on a wire, tensile strength, relation between elastic constants, Poisson's ratio, rigidity modulus

Unit 6: Special Theory of Relativity

Hours)

Postulates of Special Theory of Relativity, Lorentz transformation, length contraction, time dilation, relativistic transformation of velocity, relativistic variation of mass, mass-energy equivalence

(5

(10

(3

(5

PRACTICAL COMPONENT (30 Hours)

The teacher is expected to give basic idea and working of various apparatus and instruments related to different experiments. Students should also be given knowledge of recording and analyzing experimental data.

Every student should perform at least 06 experiments from the following list.

- 1) Measurement of length (or diameter) using vernier calliper, screw gauge and travelling microscope.
- 2) Study the random error in observations.
- 3) Determination of height of a building using a sextant.
- 4) Study of motion of the spring and calculate (a) spring constant and, (b) acceleration due to gravity (g)
- 5) Determination of moment of inertia of a flywheel.
- 6) Determination of g and velocity for a freely falling body using digital timing technique.
- 7) Determination of modulus of rigidity of a wire using Maxwell's needle.
- 8) Determination of elastic constants of a wire by Searle's method.
- 9) Determination of value of g using bar pendulum.
- 10) Determination of value of g using Kater's pendulum.

References (for Laboratory Work):

- 1) Advanced practical physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- **2)** Engineering practical physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) Practical physics, G. L. Squires, 2015, 4/e, Cambridge University Press.
- 4) A text book of practical physics, I. Prakash and Ramakrishna, 11/e, 2011, Kitab Mahal.
- 5) B. Sc. practical physics, Geeta Sanon, R. Chand and Co., 2016.

Essential readings:

FOR THEORY COMPONENT

- Vector Analysis Schaum's Outline, M.R. Spiegel, S. Lipschutz, D. Spellman, 2nd Edn., 2009, McGraw- Hill Education.
- **2)** An Introduction to Mechanics (2/e), Daniel Kleppner and Robert Kolenkow, 2014, Cambridge University Press.
- **3)** Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education
- 4) Mechanics, D. S. Mathur, P. S. Hemne, 2012, S. Chand.
- 5) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley.

Suggestive readings

- 1) Feynman Lectures, Vol. 1, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education.
- 2) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 3) University Physics, H. D. Young, R. A. Freedman, 14/e, 2015, Pearson Education.
- 4) Engineering Mechanics, Basudeb Bhattacharya, 2/e, 2015, Oxford University Press
- 5) Physics for Scientists and Engineers, Randall D Knight, 3/e, 2016, Pearson Education.

GENERIC ELECTIVES (GE - 2): MATHEMATICAL PHYSICS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit dis	stribution of	of the course	Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical/ Practice	criteria	of the course	
Mathematical Physics GE – 2	4	3	1	0	Class XII pass	NIL	

Learning Objectives

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. The course will expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.

Learning Outcomes

At the end of this course, the students will be able to,

- Understand functions of several variables.
- Represent a periodic function by a sum of harmonics using Fourier series and their applications in physical problems such as vibrating strings etc.
- Obtain power series solution of differential equation of second order with variable coefficient using Frobenius method.
- Understand properties and applications of special functions like Legendre polynomials, Bessel functions and their differential equations and apply these to various physical problems such as in quantum mechanics.
- Learn about gamma and beta functions and their applications.
- Solve linear partial differential equations of second order with separation of variable method.
- Understand the basic concepts of complex analysis and integration.
- During the tutorial classes, students' skill will be developed to solve more problems related to the concerned topics.

SYLLABUS OF GE – 2

THEORY COMPONENT

Unit 1:

(6 Hours)

Fourier s eries: Periodic functions. Orthogonality of sine and cosine functions, Convergence of Fourier series and Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Even and odd functions and their Fourier expansions (Fourier Cosine Series and Fourier Sine Series).

Unit 2:

(10 Hours)

Frobenius M ethod a nd Spe cial F unctions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre and Bessel Differential Equations.

Unit 3:

(14 Hours)

Some S pecial Integrals: Beta and Gamma Functions and Relation between them. Expression of integrals in terms of Gamma Functions.

Partial D ifferential E quations: Multivariable functions, Partial derivatives, Functions Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular geometry, Solution of 1D wave equation.

Unit 4:

(15 Hours)

Complex A nalysis: Functions of complex variable, limit, continuity, Analytic function, Cauchy-Riemann equations, singular points, Cauchy Goursat Theorem, Cauchy's Integral Formula, Residues, Cauchy's Residue Theorem.

Essential readings:

- 1) Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- **2)** Complex Variables and Applications, J. W. Brown and R. V. Churchill, 7th Ed. 2003, Tata McGraw-Hill
- **3)** Advanced Mathematics for Engineers and Scientists: Schaum Outline Series, M. R Spiegel, 2009, McGraw Hill Education.
- **4)** Applied Mathematics for Engineers and Physicists, L.A. Pipes and L.R. Harvill, 2014, Dover Publications.
- **5)** Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd Ed., 2006, Cambridge University Press.

Suggestive readings

- 1) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, 2017, Laxmi Publications Private Limited.
- **2)** Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5 Ed., 2012, Jones and Bartlett Learning.
- **3)** An introduction to ordinary differential equations, E. A. Coddington, 2009, PHI Learning.
- 4) Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 5) Mathematical methods for Scientists and Engineers, D. A. Mc Quarrie, 2003, Viva Books

GENERIC ELECTIVES (GE – 3): WAVES AND OPTICS

Credit distribution, Eligibility and Pre-requisites of the Course

		Credit di	stribution	of the course	Eligibility	Pre-requisite of	
Course title & Code Credits		Lecture	Tutorial	Practical/ Practice	criteria	the course	
Waves and Optics GE 3	4	3	0	1	Class XII pass	NIL	

Learning Objectives

This coursework reviews the concept of waves and optics learnt at school level from a more advanced perspective and builds new concepts. This course is divided into two main parts. The first part deals with vibrations and waves. The second part pertains to optics and provides the details of interference, diffraction and polarization.

Learning Outcomes

After the completion of this course, the students will have learnt the following.

- Simple harmonic motion, superposition principle and its application to find the resultant of superposition of harmonic oscillations.
- Concepts of vibrations in strings.
- Interference as superposition of waves from coherent sources.
- Basic concepts of Diffraction: Fraunhoffer and Fresnel Diffraction.
- Elementary concepts of the polarization of light.

SYLLABUS OF GE – 3

THEORY COMPONENT

Unit 1:

(10 Hours)

Superposition of Harmonic Oscillations: Simple harmonic motion (SHM). Linearity and Superposition Principle. Superposition of two collinear harmonic oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of two perpendicular harmonic oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses.

Unit 2:

(5 Hours)

Waves Motion: Types of waves: Longitudinal and Transverse (General idea). Travelling waves in a string, wave equation. Energy density. Standing waves in a string - modes of vibration. Phase velocity.

Unit 3:

(12 Hours)

Interference of L ight: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Interference: Division of amplitude and division of wave front. Young's Double Slit experiment. Fresnel's Biprism. Phase change on reflection: Stoke's treatment. Interference in Thin Films: parallel and wedge-shaped films. Newton's Rings: measurement of wavelength and refractive index.

Unit 4:

(12 Hours)

Diffraction: Fraunhofer diffraction - Single slit, Double slit and Diffraction grating. Fresnel Diffraction - Half-period zones, Zone plate, Fresnel Diffraction pattern of a straight edge using half-period zone analysis.

Unit 5:

(6 Hours)

Polarization: Transverse nature of light waves. Plane polarized light. Production and detection of linearly polarized light. Malus's Law. Idea of circular and elliptical polarization.

PRACTICAL COMPONENT (30 Hours)

Every student must perform at least 05 experiments out of the list following experiments.

- 1) To determine the frequency of an electrically maintained tuning fork by Melde's experiment and to verify $\lambda^2 T$ Law.
- 2) To study Lissajous Figures.
- 3) Familiarization with Schuster's focusing and determination of the angle of prism.
- 4) To determine the refractive index of the material of a prism using sodium light.
- 5) To determine the dispersive power of a prism using mercury light.
- 6) To determine wavelength of sodium light using Newton's rings.
- 7) To determine wavelength of sodium light using a plane diffraction grating.
- 8) To verify Malus's Law.
- 9) To determine the wavelength of Laser light using single slit diffraction. (Due care should be taken not to see Laser light source directly as it may cause injury to eyes.)

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, Asia Publishing House
- 2) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, Kitab Mahal
- **3)** An advanced course in practical physics, D. Chattopadhyay and P. C. Rakshit, New Central Book Agency

Essential readings:

FOR THEORY COMPONENT

- 1) The Physics of Waves and Oscillations: N K Bajaj, Tata Mcgraw Hill
- 2) Optics: Ajoy Ghatak, Seventh edition, Mcgraw Hill
- 3) Principle of Optics: B. K. Mathur and T. P. Pandya, Gopal Printing Press
- 4) Optics: Brij Lal and N. Subramanyam, S. Chand
- 5) The Fundamentals of Optics: A. Kumar, H. R. Gulati and D. R. Khanna, R. Chand

Suggestive readings:

- 1) Vibrations and Waves: A. P. French, CRC
- 2) The physics of Vibrations and Waves: H. J. Pain, Wiley
- 3) Fundamentals of Optics: Jenkins and White, McGraw Hill
- 4) Optics: E. Hecht and A R. Ganesan, Pearson, India
- 5) Introduction to Optics: F. Pedrotti, L. M. Pedrotti and L. S. Pedrotti, Pearson, India

GENERIC ELECTIVES (GE - 6): INTRODUCTORY ASTRONOMY

Course title & Code Cro		Credit di	stribution	of the course	Eligibility	Pre-requisite of	
	Credits	Lecture	Tutorial	Practical/ Practice	criteria	the course	
Introductory Astronomy GE 6	4	3	1	0	Class XII pass	NIL	

Credit distribution, Eligibility and Pre-requisites of the Course

Learning Objectives

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics, and more recently chemistry and biology. They will be introduced to the Indian contribution to astronomy starting from ancient times up to the modern era. They will learn about diverse set of astronomical phenomenon, from the daily and yearly motion of stars and planets in the night sky which they can observe themselves, to the expansion of the universe deduced from the latest observations and cosmological models. Students will also be introduced to internet astronomy and the citizen science research platform in astronomy. The course presupposes school level understanding of mathematics and physics.

Learning Outcomes

- After completing this course, student will gain an understanding of,
- Different types of telescopes, diurnal and yearly motion of astronomical objects, astronomical coordinate systems and their transformations
- Brightness scale for stars, types of stars, their structure and evolution on HR diagram
- Components of solar system and its evolution
- Current research in detection of exoplanets
- Basic structure of different galaxies and rotation of the Milky Way galaxy
- Distribution of chemical compounds in the interstellar medium and astrophysical conditions necessary for the emergence and existence of life
- Internet based astronomy and the collaborative citizen astronomy projects

• India's contribution to astronomy, both in ancient times and in modern era.

SYLLABUS OF GE – 6

Unit 1:

(8 Hours)

Introduction to Astronomy and Astronomical Scales: History of astronomy, wonders of the Universe, overview of the night sky, diurnal and yearly motions of the Sun, size, mass, density and temperature of astronomical objects, basic concepts of positional astronomy: Celestial sphere, Astronomical coordinate systems, Horizon system and Equatorial system

Unit 2:

(6 Hours)

Basic P arameters of S tars: S tellar energy sources, determination of distance by parallax method, aberration, proper motion, brightness, radiant flux and luminosity, apparent and absolute magnitude scales, distance modulus, determination of stellar temperature and radius, basic results of Saha ionization formula and its applications for stellar astrophysics, stellar spectra, dependence of spectral types on temperature, luminosity classification, stellar evolutionary track on Hertzsprung-Russell diagram

Unit 3:

(8 Hours)

Astronomical I nstruments: Observing through the atmosphere (Scintillation, Seeing, Atmospheric Windows and Extinction). Basic Optical Definitions for Telescopes: Magnification, Light Gathering Power, Limiting magnitude, Resolving Power, Diffraction Limit. Optical telescopes, radio telescopes, Hubble space telescope, James Web space telescope, Fermi Gamma ray space telescope.

Astronomy in the Internet Age: Overview of Aladin Sky Atlas, Astrometrica, Sloan Digital Sky Survey, Stellarium, virtual telescope

Citizen Science Initiatives: Galaxy Zoo, SETI@Home, RAD@Home India

Unit 4:

(8 Hours)

Sun and the solar system: Solar parameters, Sun's internal structure, solar photosphere, solar atmosphere, chromosphere, corona, solar activity, origin of the solar system, the nebular model, tidal forces and planetary rings

Exoplanets: Detection methods and characterization

Unit 5:

(12 Hours)

Physics of Galaxies: Basic structure and properties of different types of Galaxies, Nature of rotation of the Milky Way (Differential rotation of the Galaxy), Idea of dark matter

Cosmology an d A strobiology: Standard Candles (Cepheids and SNe Type1a), Cosmic distance ladder, Olber's paradox, Hubble's expansion, History of the Universe, Chemistry of life, Origin of life, Chances of life in the solar system

Unit 6:

(4 Hours)

Astronomy in I ndia: Astronomy in ancient, medieval and early telescopic era of India, current Indian observatories (Hanle-Indian Astronomical Observatory, Devasthal Observatory, Vainu Bappu Observatory, Mount Abu Infrared Observatory, Gauribidanur Radio Observatory, Giant Metre-wave Radio Telescope, Udaipur Solar Observatory, LIGO -

India) (qualitative discussion), Indian astronomy missions (Astrosat, Aditya)

Essential readings:

- 1) Seven Wonders of the Cosmos, Jayant V Narlikar, Cambridge University Press
- 2) Fundamental of Astronomy, H. Karttunen et al. Springer
- 3) Modern Astrophysics, B.W. Carroll and D.A. Ostlie, Addison-Wesley Publishing Co.
- **4)** Introductory Astronomy and Astrophysics, M. Zeilik and S.A. Gregory, Saunders College Publishing.
- **5)** The Molecular Universe, A.G.G.M. Tielens (Sections I, II and III), Reviews of Modern Physics, Volume 85, July-September, 2013
- 6) Astronomy in India: A Historical Perspective, Thanu Padmanabhan, Springer

Useful websites for astronomy education and citizen science research platform

- 1) https://aladin.u-strasbg.fr/
- 2) http://www.astrometrica.at/
- 3) https://www.sdss.org/
- 4) http://stellarium.org/
- 5) https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
- 6) https://setiathome.berkeley.edu/
- 7) https://www.radathomeindia.org/

Suggestive readings:

- 1) Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider, McGraw Hill
- 2) Astrophysics Stars and Galaxies K D Abhyankar, Universities Press
- **3)** Textbook of Astronomy and Astrophysics with elements of cosmology, V.B. Bhatia, Narosa Publication.
- **4)** Baidyanath Basu, An introduction to Astrophysics, Prentice Hall of India Private Limited.
- **5)** The Physical Universe: An Introduction to Astronomy, F H Shu, University Science Books

DEPARTMENT OF PHYSICS & ASTROPHYSICS Category-I BSc. (H) Physics

DISCIPLINE SPECIFIC CORE COURSE – 4: MATHEMATICAL PHYSICS II

Course title	Cradita	Credit dis	stribution	of the course	Eligibility	Pre-requisite of	
& Code	Creatis	Lecture	Tutorial	Practical	Criteria	the course	
Mathematical Physics II	4	2	0	2	Class XII Pass		
DSC-4							

LEARNING OBJECTIVES

The emphasis of course is on applications in solving problems of interest to physicists. The course will also expose students to fundamental computational physics skills enabling them to solve a wide range of physics problems. The skills developed during course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Use curvilinear coordinates to solve problems with spherical and cylindrical symmetries
- Represent a periodic function by a sum of harmonics using Fourier series
- Obtain power series solution of differential equation of second order with variable coefficient using Frobenius method
- Understand the properties and applications of Legendre polynomials
- Learn about gamma and beta functions and their applications
- In the laboratory course, the students will learn to
 - Apply appropriate numerical method to solve selected physics problems both using user defined and in-built functions from Scilab/ Python
 - Solve non-linear equations
 - Perform least square fitting of the data taken in physics lab by user defined functions.
 - Interpolate a data by polynomial approximations
 - Generate and plot a function by its series representation
 - Generate and plot Legendre polynomials and verify their properties.
 - Numerically integrate a function and solve first order initial value problems numerically.
SYLLABUS OF DSC - 4

UNIT – I

Orthogonal Curvilinear Coordinates: Orthogonal Curvilinear Coordinates. Scale factors, element of area and volume in spherical and cylindrical coordinate Systems. Derivation of Gradient, Divergence, Curl and Laplacian in Spherical and Cylindrical Coordinate Systems Fourier Series: Periodic functions, Orthogonality of sine and cosine functions, Convergence of Fourier series and Dirichlet Conditions (Statement only), Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients, Even and odd functions and their Fourier expansions (Fourier Cosine Series and Fourier Sine Series), Parseval's Identity.

UNIT – II

Frobenius Method and series solution of Differential Equations: Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method for finding series solution and its applications, Legendre Differential Equations and its solution. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality of Legendre Polynomials, Simple recurrence relations, Expansion of function in a series of Legendre Polynomials.

Some Special Integrals: Beta and Gamma Functions and relation between them, Expression of Integrals in terms of Gamma and Beta Functions.

References:

Essential Readings:

- 1) Mathematical Methods for Scientists and Engineers, D. A. McQuarrie, 2003, Viva Book.
- 2) Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- 3) Essential Mathematical Methods, K. F. Riley and M. P. Hobson, 2011, Cambridge Univ. Press.
- 4) Vector Analysis and Cartesian Tensors, D. E. Bourne and P. C. Kendall, 3 Ed., 2017, CRC Press.
- 5) Vector Analysis, Murray Spiegel, 2nd Ed., 2017, Schaum's Outlines Series.
- 6) Fourier analysis: With Applications to Boundary Value Problems, Murray Spiegel, 2017, McGraw Hill Education.
- 7) Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- 8) Mathematical Methods for Physicists, G. B. Arfken, H. J. Weber, F. E. Harris, 7 Ed., 2013, Elsevier.

Additional Readings:

- 1) Introduction to Electrodynamics, Chapter 1, David J. Griffiths, 4 Ed., 2017, Cambridge University Press.
- 2) The Feynman Lectures on Physics, Volume II, Feynman, Leighton and Sands, 2008, Narosa Publishing House.
- 3) Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5 Ed., 2012, Jones and

(13 Hours)

(17 Hours)

Bartlett Learning.

- 4) Introduction to Vector Analysis, Davis and Snider, 6 Ed., 1990, McGraw Hill.
- 5) Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- 6) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, 2017, Laxmi Publications Private Limited.

PRACTICAL COMPONENT -

60 Hours

The aim of this laboratory is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics. The course will consist of practical sessions and lectures on the related theoretical aspects of the laboratory. Assessment is to be done not only on the programming but also on the basis of formulating the problem.

- Every student must perform at least 12 programs covering each unit.
- The list of recommended programs is suggestive only. Students should be encouraged to do more practice. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods.
- The implementation can be either in Python/ C++/ Scilab.

Unit 1: Root Finding: Bisection, Newton Raphson and secant methods for solving roots of equations, Convergence analysis.

Recommended List of Programs (At least two):

- (a) Determine the depth up to which a spherical homogeneous object of given radius and density will sink into a fluid of given density.
- (b) Solve transcendental equations like $\alpha = \tan(\alpha)$.
- (c) To approximate nth root of a number up to a given number of significant digits.

Unit 2: Least Square fitting (At least one): Algorithm for least square fitting and its relation to maximum likelihood for normally distributed data.

- a) Make a function for least square fitting, use it for fitting given data (x, y) and estimate the parameters a, b as well as uncertainties in the parameters for the following cases.
 - i. Linear (y = ax + b)
 - ii. Power law $(y = ax^b)$
 - iii. Exponential $(y = ae^{bx})$
- b) Weighted least square fitting of given data (x, y) with known error/uncertainty-values using user defined function.

Unit 3: Generating and plotting of a function using series representation (At least one):

- a) To approximate the elementary functions (e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\ln(1+x)$, etc.) by a finite number of terms of Taylor's series and discuss the truncation error. To plot the function as well the nth partial sum of its series for various values of *n* on the same graph and visualise the convergence of series.
- b) Generating and plotting Legendre Polynomials using series expansion and verifying recurrence relation

Unit 4: Interpolation: Concept of Interpolation, Lagrange form of interpolating polynomial,

Error estimation, optimal points for interpolation.

Recommended List of Programs (At least one)

- (a) Write program to determine the unique polynomial of a degree *n* that agrees with a given set of (n+1) data points (x_i, y_i) and use this polynomial to find the value of *y* at a value of *x* not included in the data.
- (b) Generate a tabulated data containing a given number of values $(x_i, f(x_i))$ of a function f(x) and use it to interpolate at a value of x not used in table.

Unit 5: **Numerical Integration:** Newton Cotes Integration methods (Trapezoidal and Simpson rules) for definite integrals, derivation of composite formulae for these methods and discussion of error estimation.

Recommended List of Programs (At least three)

- (a) Given acceleration at equidistant time values, calculate position and velocity and plot them.
- (b) Use integral definition of ln(x) to compute and plot ln(x) in a given range. Use trapezoidal, Simpson and Gauss quadrature methods and compare the results.
- (c) Verify the rate of convergence of the composite Trapezoidal and Simpson methods by approximating the value of a given definite integral.
- (d) Verify the Orthogonality of Legendre Polynomials.
- (e) To evaluate the Fourier coefficients of a given periodic function (e.g. square wave, triangle wave, half wave and full wave rectifier etc.). To plot the function as well the nth partial sum of its series for various values of *n* on the same graph and visualise the convergence of series. Study of Gibbs phenomenon.
- (f) Verify the properties of Dirac Delta function using its representation as a sequence of functions.

Unit 6: Numerical Solutions of Ordinary Differential Equations: Euler, modified Euler, and Runge-Kutta (RK) second and fourth order methods for solving first order initial value problems (IVP) and system of first order differential equations,

Recommended List of Programs (At least two)

- (a) Solve given first order differential equation (Initial value problems) numerically using Euler RK2 and RK4 methods and apply to the following physics problems:
 - i. Radioactive decay
 - ii. Current in RC and LR circuits with DC source
 - iii. Newton's law of cooling
- (b) Write a code to compare the errors in various numerical methods learnt by solving a first order IVP with known solution.
- (c) Solve a system of first order IVP numerically using Euler and Runge-Kutta methods. Application to physical problems.

References (for Laboratory work):

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 3) Computational Physics, Darren Walker, 1st Edn., Scientific International Pvt. Ltd (2015).
- 4) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edn., 2007, Wiley India Edition.
- 5) An Introduction to Computational Physics, T. Pang, Cambridge University Press (2010).
- 6) Introduction to Numerical Analysis, S. S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- 7) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, India (2007).
- 8) Numerical Recipes: The art of scientific computing, William H. Press, Saul A. Teukolsky and William Vetterling, Cambridge University Press; 3rd edition (2007)
- 9) Computational Problems for Physics, R. H. Landau and M. J. Páez, 2018, CRC Press.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 5: ELECTRICITY AND MAGNETISM

Course title	Cradita	Credit dis	stribution	of the course	Eligibility	Pre-requisite of
& Code	Creuits	Lecture	Tutorial	Practical	Criteria	the course
Electricity and Magnetism	4	3	0	1	Class XII Pass	
DSC - 5						

LEARNING OBJECTIVES

This course reviews the concepts of electromagnetism learnt at school from a more advanced perspective and goes on to build new concepts. The course covers static and dynamic electric and magnetic fields due to continuous charge and current distributions respectively.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Apply Coulomb's law to line, surface, and volume distribution of charges.
- Apply Gauss's law of electrostatics to distribution of charges
- Solve boundary value problems using method of images
- Understand the concept of electric polarization and bound charges in dielectric materials
- Understand and calculate the vector potential and magnetic field of arbitrary current distribution
- Understand the concept of bound currents and magnetic susceptibility in magnetic materials
- Understand the impact of time-varying magnetic and electric fields in order to comprehend the formulation of Maxwell's equations.

<u>SYLLABUS OF DSC – 5</u>

UNIT – I

Electric Field and Electric Potential for continuous charge distributions: Electric field due to a line charge, surface charge and volume charge, Divergence of electric field using the Dirac Delta function, Curl of electric field, Electric field vector as negative gradient of scalar potential, Ambiguities of electric potential, Differential and integral forms of Gauss's Law, Application of Gauss's law to various charge distributions having spherical, cylindrical and planar symmetries.

Boundary Value Problems in Electrostatics: Formulation of Laplace's and Poisson equations, First and second uniqueness theorems, Solutions of Laplace and Poisson equations in one

(15 Hours)

dimension using spherical and cylindrical coordinate systems and solutions in threedimensional using Cartesian coordinates applying separable variable technique, Electrostatic boundary conditions for conductors and capacitors.

UNIT – II

Special techniques for the calculation of Potential and Field: The Method of Images is applied to a system of a point charge and finite continuous charge distribution (line charge and surface charge) in the presence of (i) a plane infinite sheet maintained at constant potential, and (ii) a sphere maintained at constant potential.

Electric Field in Matter: Polarization in matter, Bound charges and their physical interpretation, Field inside a dielectric, Displacement vector **D**, Gauss' law in the presence of dielectrics, Boundary conditions for **D**, Linear dielectrics, electric susceptibility and dielectric constant, Idea of complex dielectric constant due to varying electric field, Boundary value problems with linear dielectrics

UNIT – III

Magnetic Field: Divergence and curl of magnetic field **B**, Magnetic field due to arbitrary current distribution using Biot-Savart law, Integral and differential forms of Ampere's law, Vector potential and its ambiguities, Coulomb gauge and possibility of making vector potential divergence less, Vector potential due to line, surface and volume currents using Poisson equations for components of vector potential.

Magnetic Properties of Matter: Magnetization vector, Bound currents, Magnetic intensity, Differential and integral form of Ampere's Law in the presence of magnetised materials, Magnetic susceptibility and permeability of diamagnetic, paramagnetic and ferromagnetic materials.

Electrodynamics: Faraday's law, Lenz's law, Inductance and electromotive force, Ohm's law $(\vec{J} = \sigma \vec{E})$, Energy stored in a magnetic field, Continuity equation, Displacement current and displacement current density, Basic introduction to Maxwell's equations in electromagnetism.

References:

Essential Readings:

- 1) Introduction to Electrodynamics, D. J. Griffiths, 3rd Edn., 1998, Benjamin Cummings
- 2) Schaum's Outlines of Electromagnetics by J. A. Edminister and M. Nahvi
- 3) Fundamentals of Electricity and Magnetism, Arthur F. Kip, 2nd Edn. 1981, McGraw-Hill.
- 4) Electromagnetic Fields and Waves, Paul Lorrain and Dale Corson, 1991, W. H. Freeman.
- 5) Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- 6) Electricity and Magnetism, Tom Weideman, University of California Davis. [url: https://zhu.physics.ucdavis.edu/Physics9C-

C_2021/Physics%209C_EM%20by%20Tom%20Weideman.pdf]

Additional Readings:

1) Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education

(19 Hours)

(11 Hours)

- 2) Electricity, Magnetism and Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- 3) Electricity and Magnetism, J. H. Fewkes and J. Yarwood, Vol. I, 1991, Oxford Univ. Press.
- 4) Problems and Solutions in Electromagnetics (2015), Ajoy Ghatak, K Thyagarajan and Ravi Varshney.

PRACTICAL

- 30 Hours

Every student must perform at least five experiments.

- Magnetic field variation along the axis of a circular coil and in a Helmholtz coil ((r > a, r = a and r < a). Here, 'a' is radius of coil and 'r' is distance between the coils).
- 2) **B-H** curves for soft and hard ferromagnetic materials and comparison of their coercivity, retentivity and saturation magnetization for same applied magnetic field.
- 3) Measurement of field strength **B** and its variation in a solenoid (determine $d\mathbf{B}/d\mathbf{x}$)
- 4) Measurement of current and charge sensitivity of ballistic galvanometer
- 5) Measurement of critical damping resistance of ballistic galvanometer
- 6) Determination of a high resistance by leakage method using ballistic galvanometer
- 7) Measurement of self-inductance of a coil by Anderson's Bridge
- 8) Measurement of self-inductance of a coil by Owen's Bridge
- 9) To determine the mutual inductance of two coils by the Absolute method

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th Ed., 2011, Kitab Mahal
- 3) Advanced Level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 4) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning
- 5) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press

DISCIPLINE SPECIFIC CORE COURSE – 6: ELECTRICAL CIRCUIT ANALYSIS

Course title & Credits		Credit dis	stribution	of the course	Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical	Criteria	the course
Electrical Circuit Analysis	4	2	0	2	Class XII pass	
DSC - 6						

LEARNING OBJECTIVES

This course covers the basic circuit concepts in a systematic manner which is suitable for analysis and design. It aims at study and analysis of electric circuits using network theorems and two-port parameters.

LEARNING OUTCOMES

At the end of the course the student will be able to,

- Understand the basic concepts, basic laws and methods of analysis of DC and AC networks and their difference
- Solve complex electric circuits using network theorems.
- Discuss resonance in series and parallel circuits and also the importance of initial conditions and their evaluation.
- Evaluate the performance of two port networks.

SYLLABUS OF DSC – 6

THEORY COMPONENT

Unit 1: (8 Hours)

Circuit Analysis: Ideal voltage source, real voltage source, current source, Kirchhoff's current law, Kirchhoff's voltage law, node analysis, mesh analysis, Star and Delta conversion DC Transient Analysis: Charging and discharging with initial charge in RC circuit, RL circuit with initial current, time constant, RL and RC Circuits with source

Unit 2: (12 Hours)

AC Circuit Analysis: Sinusoidal voltage and current, Definitions of instantaneous, peak to peak, root mean square and average values, form factor and peak factor (for half-rectified and full-rectified sinusoidal wave, rectangular wave and triangular wave), voltage-current relationship in resistor, inductor and capacitor, phasor, complex impedance, power in AC circuits, sinusoidal circuit analysis for RL, RC and RLC Circuits, resonance in series and

parallel RLC Circuits (Frequency Response, Bandwidth, Quality Factor), selectivity, application of resonant circuits

Unit 3: (10 Hours)

Network Theorems: Principal of duality, Superposition theorem, Thevenin theorem, Norton theorem, Their applications in DC and AC circuits with more than one source, Maximum Power Transfer theorem for AC circuits, Reciprocity Theorem, Millman's Theorem, Tellegen's theorem

Two Port Networks: Impedance (Z) Parameters, Admittance (Y) Parameters, Transmission Parameters, Impedance matching

References:

Essential Readings:

- 1) Electric Circuits, S. A. Nasar, Schaum's Outline Series, Tata McGraw Hill (2004)
- 2) Essentials of Circuit Analysis, Robert L. Boylestad, Pearson Education (2004)
- 3) Electrical Circuits, M. Nahvi and J. Edminister, Schaum's Outline Series, Tata McGraw-Hill (2005)
- 4) Fundamentals of Electric Circuits, C. Alexander and M. Sadiku, McGraw Hill (2008)
- 5) Principles of Electric Circuits, Thomas L. Floyd, 9/e (2016)

Additional Readings:

- 1) Network analysis, M. E. Van Valkenburg, Third edition, Prentice Hall
- 2) Network, Lines and Fields, John D. Ryder, Pearson Ed. II, 2015.
- 3) Electrical Circuits, K. A. Smith and R. E. Alley, 2014, Cambridge University Press

PRACTICAL COMPONENT - 60 Hours

Every student must perform at least seven experiments from the following list of experiments

- 1) Verification of Kirchoff's Law.
- 2) Verification of Superposition Theorem by using d.c. and a.c. voltage source
- 3) Verification of Norton's theorem.
- 4) Verification of Thevenin's Theorem and Maximum Power Transfer Theorem by using d.c. and a.c. voltage source
- 5) Determination of unknown capacitance using de Sauty's Bridge
- 6) Determination of time constant of RC and RL circuit
- 7) Study of frequency response of RC circuit
- 8) Study of frequency response of a parallel LCR Circuit and determination of its resonant frequency, impedance at resonance, quality factor and bandwidth.
- 9) Explore electrical properties of matter using Arduino:
 - a. To study the characteristics of a series RC Circuit.
 - b. To study the response curve of a series LCR circuit and determine its resonant frequency, impedance at resonance, quality factor and bandwidth

References (for Laboratory Work):

- 1) A Textbook of Electrical Technology, B. L. Thareja, A. K. Thareja, Volume II, S. Chand
- 2) Fundamentals of Electric Circuits, C. Alexander and M. Sadiku, McGraw Hill (2008)
- 3) Electric Circuits, S. A. Nasar, Schaum's Outline series, Tata McGraw Hill (2004)
- 4) Electrical Circuits, K. A. Smith and R.E. Alley, 2014, Cambridge University Press
- 5) Electrical Circuit Analysis, K. Mahadevan and C. Chitran, 2nd Edition, 2018, PHI Learning Pvt. Ltd.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

Category II

B. Sc. Physical Science with Physics as one of the Core Discipline

DISCIPLINE SPECIFIC CORE COURSE (PHYSICS DSC - 2): ELECTRICITY AND MAGNETISM

Course Title	Credits	Credit	distribut course	ion of the	Eligibility	Pre-requisite of the
& Code	Lecture Tutorial Practical		Practical	criteria	course	
Electricity and Magnetism	4	2	0	2	Class XII pass	
Physics DSC 2						

LEARNING OBJECTIVES

This course reviews the concepts of electricity and magnetism learnt at school from a more advanced perspective and goes on to build new concepts. The course covers static and dynamic electric and magnetic fields, and the principles of electromagnetic induction. It also includes analysis of electrical circuits and introduction of network theorems. The students will be able to apply the concepts learnt to several real world problems.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- Understand Gauss' law, Coulomb's law for the electric field, and apply them to systems of point charges as well as line, surface, and volume distributions of charges. Also to use the knowledge to solve some simple problems
- Express electric current and capacitance in terms of electric field and electric potential.
- Calculate the force experienced by a moving charge in a magnetic field
- Determine the magnetic force generated by a current carrying conductor
- Have brief idea of magnetic materials, understand the concept of electromagnetic induction, solve problems using Faraday's and Lenz's laws

In the laboratory course, students will be able to measure resistance (high and low), voltage, current, self and mutual inductance, capacitor, strength of magnetic field and its variation, study different electric circuits.

<u>SYLLABUS OF PHYSICS DSC – 2</u>

THEORY COMPONENT

Unit 1: (10 Hours)

Electrostatics: Electric field, electric flux, Gauss' theorem in electrostatics, applications of Gauss' theorem (linear, plane and spherical charge distribution), line integral of electric field, electric potential due to a point charge, electric potential and electric field of a dipole and charged disc, capacitance due to parallel plates and spherical condenser. Electrostatic energy of system of charge (charged sphere), dielectric medium, dielectric polarization, displacement vector, Gauss' theorem in dielectrics, parallel plate capacitor filled with dielectric.

Unit 2: (8 Hours)

Magnetostatics: Magnetic force between current elements and definition of magnetic field **B**, Biot-Savart's law and its applications (current carrying straight conductor, current carrying circular coil, current carrying solenoid), divergence and curl of magnetic field, Ampere's circuital law, magnetic properties of materials (magnetic intensity, magnetic induction, permeability, magnetic susceptibility), brief introduction of dia-, para- and ferro magnetic materials

Unit 3: (7 Hours)

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, selfinductance of single coil, mutual inductance of two coils, energy stored in magnetic field. Maxwell's equations and equation of continuity of current, displacement current

Unit 4: (5 Hours)

DC Circuits: Review of Kirchhoff's Voltage and Current Laws, Thevenin theorem, Norton theorem, Superposition theorem, Maximum Power Transfer theorem.

References:

Essential Readings:

- 1) Fundamentals of Electricity and Magnetism, Arthur F. Kip, 2nd Edn. 1981, McGraw-Hill.
- 2) Electricity and Magnetism, J. H. Fewkes and J. Yarwood. Vol. I, 1991, Oxford Univ. Press
- 3) Electricity and Magnetism, D. C. Tayal, 1988, Himalaya Publishing House.
- 4) Fundamentals of Electromagnetics, M. A. W. Miah, 1982, Tata McGraw Hill
- 5) Introduction to Electrodynamics, D. J. Griffiths, 3rd Edn, 1998, Benjamin Cummings.

Additional Readings:

- 1) Electricity and Magnetism, Berkeley Physics Course, Edward M. Purcell, 1986, McGraw-Hill Education.
- 2) Problems and Solutions in Electromagnetics, Ajoy Ghatak, K Thyagarajan and Ravi Varshney.
- 3) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

4) Schaum's Outline of Electric Circuits, J. Edminister and M. Nahvi, 3rd Edn., 1995, McGraw Hill.

PRACTICAL COMPONENT – 60 Hours

The teacher is expected to give basic idea and working of various instruments and circuits related to different experiments. Students should also be given knowledge of recording and analyzing experimental data.

Every student should perform at least 06 experiments from the following list of experiments.

- 1) To use a multimeter for measuring resistances, a.c and d.c voltages, d.c. current, capacitance and for checking electrical fuses.
- 2) Ballistic Galvanometer:
 - a) Measurement of charge and current sensitivity
 - b) Measurement of critical damping resistance
 - c) Determine a high resistance by leakage method
 - d) Determine self-inductance of a coil by Rayleigh's Method.
- 3) To compare capacitances using de Sauty's bridge.
- 4) Measurement of field strength B and its variation in a Solenoid
- 5) To study the Characteristics of a Series RC Circuit.
- 6) To study a series LCR circuit and determine its resonant frequency and quality factor.
- 7) To study a parallel LCR circuit and determine its anti-resonant frequency and quality factor
- 8) To determine a low resistance by Carey Foster bridge.
- 9) To verify the Thevenin, superposition and maximum power transfer theorems
- 10) To verify Norton theorem

References (for Laboratory Work):

- 1) Advanced Practical Physics for Students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) A Textbook of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press
- 5) Advanced Level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

Category II

(Physical Science Courses (with Electronics) for Undergraduate Programme of study with Physics and Electronics discipline as Core Disciplines)

DISCIPLINE SPECIFIC CORE COURSE (PHYSICS DSC - 3): ELECTRICITY AND MAGNETISM

Course Title	Course Title		stribution	of the course	Eligibility	Pre-requisite	
& Code	Creuits	Lecture	Tutorial	Practical	criteria	of the course	
Electricity and Magnetism	4	2	0	2	Class XII pass		
Physics DSC 3							

LEARNING OBJECTIVES

This course reviews the concepts of electricity and magnetism learnt at school from a more advanced perspective and goes on to build new concepts. The course covers static and dynamic electric and magnetic fields, and the principles of electromagnetic induction. It also includes analysis of electrical circuits and introduction of network theorems. The students will be able to apply the concepts learnt to several real world problems.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- Understand Gauss' law, Coulomb's law for the electric field, and apply them to systems of point charges as well as line, surface, and volume distributions of charges. Also to use the knowledge to solve some simple problems
- Express electric current and capacitance in terms of electric field and electric potential.
- Calculate the force experienced by a moving charge in a magnetic field
- Determine the magnetic force generated by a current carrying conductor
- Have brief idea of magnetic materials, understand the concept of electromagnetic induction, solve problems using Faraday's and Lenz's laws

In the laboratory course, students will be able to measure resistance (high and low), voltage, current, self and mutual inductance, capacitor, strength of magnetic field and its variation, study different electric circuits.

SYLLABUS OF PHYSICS DSC – 3

THEORY COMPONENT

Unit 1: (10 Hours)

Electrostatics: Electric field, electric flux, Gauss' theorem in electrostatics, applications of Gauss' theorem (linear, plane and spherical charge distribution), line integral of electric field, electric potential due to a point charge, electric potential and electric field of a dipole and charged disc, capacitance due to parallel plates and spherical condenser. Electrostatic energy of system of charge (charged sphere), dielectric medium, dielectric polarization, displacement vector, Gauss' theorem in dielectrics, parallel plate capacitor filled with dielectric.

Unit 2: (8 Hours)

Magnetostatics: Magnetic force between current elements and definition of magnetic field **B**, Biot-Savart's law and its applications (current carrying straight conductor, current carrying circular coil, current carrying solenoid), divergence and curl of magnetic field, Ampere's circuital law, magnetic properties of materials (magnetic intensity, magnetic induction, permeability, magnetic susceptibility), brief introduction of dia-, para- and ferro magnetic materials

Unit 3: (7 Hours)

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, selfinductance of single coil, mutual inductance of two coils, energy stored in magnetic field. Maxwell's equations and equation of continuity of current, displacement current

Unit 4: (5 Hours)

DC Circuits: Review of Kirchhoff's Voltage and Current Laws, Thevenin theorem, Norton theorem, Superposition theorem, Maximum Power Transfer theorem.

References:

Essential Readings:

- 1) Fundamentals of Electricity and Magnetism, Arthur F. Kip, 2nd Edn. 1981, McGraw-Hill.
- 2) Electricity and Magnetism, J. H. Fewkes and J. Yarwood, Vol. I, 1991, Oxford Univ. Press
- 3) Electricity and Magnetism, D. C. Tayal, 1988, Himalaya Publishing House.
- 4) Fundamentals of Electromagnetics, M. A. W. Miah, 1982, Tata McGraw Hill
- 5) Introduction to Electrodynamics, D. J. Griffiths, 3rd Edn, 1998, Benjamin Cummings.

Additional Readings:

- 1) Electricity and Magnetism, Berkeley Physics Course, Edward M. Purcell, 1986, McGraw-Hill Education.
- 2) Problems and Solutions in Electromagnetics, Ajoy Ghatak, K Thyagarajan and Ravi Varshney

- 3) University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- 4) Schaum's Outline of Electric Circuits, J. Edminister and M. Nahvi, 3rd Edn., 1995, McGraw Hill.

PRACTICAL COMPONENT - 60 Hours

The teacher is expected to give basic idea and working of various instruments and circuits related to different experiments. Students should also be given knowledge of recording and analyzing experimental data.

Every student should perform at least 06 experiments from the following list of experiments.

- 1) To use a multimeter for measuring resistances, a.c and d.c voltages, d.c. current, capacitance and for checking electrical fuses.
- 2) Ballistic Galvanometer:
 - e) Measurement of charge and current sensitivity
 - f) Measurement of critical damping resistance
 - g) Determine a high resistance by leakage method
 - h) Determine self-inductance of a coil by Rayleigh's Method.
- 3) To compare capacitances using de Sauty's bridge.
- 4) Measurement of field strength B and its variation in a Solenoid
- 5) To study the Characteristics of a Series RC Circuit.
- 6) To study a series LCR circuit and determine its resonant frequency and quality factor.
- 7) To study a parallel LCR circuit and determine its anti-resonant frequency and quality factor
- 8) To determine a low resistance by Carey Foster bridge.
- 9) To verify the Thevenin, superposition and maximum power transfer theorems
- 10) To verify Norton theorem

References (for Laboratory Work):

- 1) Advanced Practical Physics for Students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) A Textbook of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press
- 5) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE (PHYSICS DSC - 4): LINEAR AND DIGITAL INTEGRATED CIRCUITS

Course Title	Cradita	Credit dis	tribution of	the course	Eligibility	Pre-requisite
& Code	Lecture Tutorial Practical		criteria	of the course		
Linear and						
Digital						
Integrated	4	2	0	2	Class XII pass	
Circuits						
Physics DSC 4						

LEARNING OBJECTIVES

This paper aims to provide the basic knowledge of linear and digital electronics. It discusses about the operational amplifier and its applications. Boolean algebra and combinational logic circuits are also discussed.

LEARNING OUTCOMES

At the end of this course, students will be able to achieve the following learning outcomes.

- To understand Op-Amp basics and its various applications.
- To become familiar with logic gates and boolean algebra theorems.
- To understand the minimization techniques for designing a simplified logic circuit.
- To design a half adder, full adder, half-subtractor, and full-subtractor.
- To understand the working of data processing circuits, multiplexers, de-multiplexers, decoders and encoders.
- To become familiar with the working of flip-flop circuits, its working and applications.

SYLLABUS OF PHYSICS DSC – 4

THEORY COMPONENT

Unit 1: (8 Hours)

Operational Amplifiers (Black box approach): Characteristics of an ideal and practical Operational Amplifier (IC 741), Open and closed loop configuration, CMRR, Slew Rate and the concept of Virtual Ground.

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Summing and Difference Amplifier, (3) Differentiator, (4) Integrator, (5) Wein bridge oscillator, (6) Comparator, and (7) Active low pass and high pass Butter worth filter (1st order only).

Unit 2: (6 Hours)

Logic Gates and Boolean algebra: Truth Tables of OR, AND, NOT, NOR, NAND, XOR, XNOR, Basic postulates and fundamental theorems of Boolean algebra.

Combinational Logic Analysis and Design: Standard representation of logic functions (SOP), Minimization Techniques (Karnaugh map minimization up to 4 variables for SOP).

Unit 3: (6 Hours)

Arithmetic Circuits: Half and Full Adder, Half and Full Subtractor, 4-bit binary Adder/Subtractor

Data processing circuits: Multiplexers, De-multiplexers, Decoders, Encoders

Unit 4: (5 Hours)

Sequential Circuits: SR, D, and JK Flip-Flops. Race-around conditions in JK Flip-Flop. Master-slave JK Flip-Flop.

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel in-Parallel-out Shift Registers (only up to 4 bits). Ring Counter.

Unit 5: (5 Hours)

Counters (4 bits): Asynchronous counter, Synchronous Counter.

D-A and A-D Conversion: 4 bit binary weighted and R-2R D-A converters, A-D conversion characteristics, successive approximation ADC.

References:

Essential Readings:

- 1) Op-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- 2) Operational Amplifiers and Linear ICs, David A. Bell, 3rd Edition, 2011, Oxford University Press.
- Digital Principles and Applications, A. P. Malvino, D. P. Leach and Saha, 8th Ed., 2018, Tata McGraw
- 4) Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill
- 5) Digital Fundamentals, Thomas L. Flyod, Pearson Education Asia (1994).
- 6) Digital Principles, R. L. Tokheim, Schaum's outline series, Tata McGraw-Hill (1994).

PRACTICAL COMPONENT – 60 Hours

Every student should perform at least 04 experiments each from section A, B and C

Section A: Op-Amp. Circuits (Hardware design)

- 1) To design an inverting and non-inverting amplifier using Op-amp (741,351) for dc voltage of given gain.
- 2) To design inverting and non-inverting amplifier using Op-amp (741,351) and study their frequency responses
- 3) To add two dc voltages using Op-Amp in inverting and non-inverting mode.
- 4) To design a precision Differential amplifier of given I/O specification using Op-amplifier.

- 5) To investigate the use of an op-amp as an Integrator.
- 6) To investigate the use of an op-amp as a Differentiator.
- 7) To design a Wien bridge oscillator for given frequency using an Op-Amplifier.
- 8) Design a Butter-worth Low Pass active Filter (1st order) and study frequency response.
- 9) Design a Butter-worth High Pass active Filter (1st order) and study frequency response.
- 10) Design a digital to analog converter (DAC) of given specifications.

Section B: Digital circuits (Hardware design)

- 1) (a) To design a combinational logic system for a specified Truth Table.
 - (b) To convert Boolean expression into logic circuit & design it using logic gate ICs.
 - (c) To minimize a given logic circuit.
- 2) Half Adder and Full Adder.
- 3) Half Subtractor and Full Subtractor.
- 4) 4 bit binary adder and adder-subtractor using Full adder IC.
- 5) To design a seven segment decoder.
- 6) To build Flip-Flop (RS, D-type and JK) circuits using NAND gates.
- 7) To build JK Master-slave flip-flop using Flip-Flop ICs.
- 8) To build a Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 9) To make a Shift Register (serial-in and serial-out) using D-type/JK Flip-Flop ICs.

Section C: SPICE/MULTISIM simulations for electronic circuits and devices

- 1) To verify the Thevenin and Norton Theorems.
- 2) Design and analyze the series and parallel LCR circuits.
- 3) Design the inverting and non-inverting amplifier using an Op-Amp of given gain.
- 4) Design and Verification of op-amp as integrator and differentiator.
- 5) Design the 1st order active low pass and high pass filters of given cutoff frequency.
- 6) Design a Wein's Bridge oscillator of given frequency.
- 7) Design clocked SR and JK Flip-Flop's using NAND Gates.
- 8) Design 4-bit asynchronous counter using Flip-Flop ICs.

References (For Laboratory Work):

- 1) Fundamentals of Digital Circuits, Anand Kumar, 4th Edn, 2018, PHI Learning.
- 2) Digital Computer Electronics, A. P. Malvino, J.A. Brown, 3rd Edition, 2018, Tata McGraw Hill Education.
- 3) Digital Electronics, S. K. Mandal, 2010, 1st edition, Tata McGraw Hill.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

Category-IV

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

Course Title & Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite	
	Lectu		Tutorial	Practical	criteria	of the course	
Electricity and Magnetism	4	3	0	1	Class XII pass	NIL	
GE – 11							

LEARNING OBJECTIVES

This course begins with theorems of network analysis which are required to perform the associated experiments in the laboratory. Then course delves into the elementary vector analysis, an essential mathematical tool for understanding static electric field and magnetic field. By the end of the course, the student should appreciate Maxwell's equations.

LEARNING OUTCOMES

At the end of this course the student will be able to,

- Apply Coulomb's law to line, surface, and volume distributions of charges.
- Apply Gauss's law of electrostatics to distribution of charges
- Understand the effects of electric polarization and concepts of bound charges in dielectric materials
- Understand and calculate the vector potential and magnetic field of arbitrary current distribution
- Understand the concept of bound currents and ferromagnetism in magnetic materials

SYLLABUS OF GE – 11

THEORY COMPONENT

Unit 1: (15 Hours)

Network Analysis: Superposition, Thevenin, Norton theorems and their applications in DC and AC circuits with more than one source, Maximum Power Transfer theorem for AC circuits Mathematical Preliminaries: Concept of scalar and vector fields, Gradient of a scalar field, Divergence and curl of vector fields and their physical interpretation, Conservative forces and Laplace and Poisson equations.

Concept of a line integral of a scalar and vector field, surface integral of vector fields and volume integral, Gauss's theorem, Stoke's theorem.

Unit 2: (15 Hours)

Electric Field and Electric Potential for continuous charge distributions: Electric field due to a line charge, surface charge and volume charge distributions, Electric field vector as negative gradient of scalar potential, Ambiguities of Electric potential, Differential and integral forms of Gauss's Law, Applications of Gauss's Law to various charge distributions with spherical, cylindrical and planar symmetries, Uniqueness theorem

Electric Field in Matter: Bound charges due to polarization and their physical interpretation. Average electric field inside a dielectric, Electric Field in spherical and cylindrical cavities of a dielectric, Displacement vector and its boundary conditions, Gauss' Law in the presence of dielectrics, Linear dielectrics: electric susceptibility and dielectric constant, Boundary value problems with linear dielectrics.

Unit 3: (15 Hours)

Magnetic Field: Divergence and curl of magnetic field B, Magnetic field due to arbitrary current distribution using Biot-Savart law, Ampere's law, integral and differential forms of Ampere's Law, Vector potential and its ambiguities.

Magnetic Properties of Matter: Magnetization vector, Bound Currents, Magnetic Intensity, Differential and integral form of Ampere's Law in the presence of magnetised materials, Magnetic susceptibility and permeability, Ferromagnetism (Hund's rule)

Electrodynamics: Faraday's Law, Lenz's Law, inductance, Electromotive force, Ohm's Law $(\vec{J} = \sigma \vec{E})$, Energy stored in a Magnetic Field. Charge Conservation, Continuity equation, Differential and integral forms of Maxwell's equations in matter.

References:

Essential Readings:

- 1) Introduction to Electrodynamics, D. J. Griffiths, 4th Edn., 2015, Pearson Education India Learning Private Limited.
- 2) Schaum's Outlines of Electromagnetics, M. Nahvi and J. A. Edminister, 2019, McGraw-Hill Education.
- 3) Electromagnetic Fields and Waves, Paul Lorrain and Dale Corson, 1991, W. H. Freeman.
- 4) Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- 5) Network, Lines and Fields, John D. Ryder, 2nd Edn., 2015, Pearson.
- 6) Introductory Circuit Analysis, R. Boylestead, 2016, Pearson.
- 7) Electricity and Magnetism, Tom Weideman, University of California Davis. [url: https://zhu.physics.ucdavis.edu/Physics9C-C_2021/Physics%209C_EM%20by%20Tom%20Weideman.pdf]

Additional Readings:

- 1) Feynman Lectures Vol. 2, R. P. Feynman, R. B. Leighton, M. Sands, 2008, Pearson Education
- 2) Electricity, Magnetism and Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- 3) Fundamentals of Physics, Resnick, Halliday and Walker 10/e, 2013, Wiley

PRACTICAL COMPONENT- 30 Hours

Learning Outcome:

- To understand working of Arduino Microcontroller System
- To use Arduino to measure time, count events and time between events
- To use Arduino to measure voltage/current/resistance
- To use Arduino to measure various physical parameters like magnetic field

Unit I (Mandatory): Arduino Programming

Introduction to Arduino Microcontroller platform. Getting acquainted with the Arduino IDE and Basic Sketch structure. Digital Input and output. Measuring time and events. Measuring analog voltage. Generating analog voltage using Pulse Width Modulation. Serial communication and serial monitor. Programming using Interrupts.

Unit II: Exploring electrical properties of matter using Arduino (at least one experiment)

- To study the characteristics of a series RC Circuit.
- To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- Diode Characteristics:
 - To study characteristics of diode and estimate Boltzman constant.
 - To study characteristics of LED and estimate Planck's constant

Unit III: Exploring magnetic properties of matter using Arduino

• To verify Faraday's law and Lenz's law by measuring induced voltage across a coil subjected to varying magnetic field. Also, estimate dipole moment of the magnet.

Unit IV: DC and AC Bridges (at least one experiment)

- To compare capacitances using de Sauty Bridge
- To determine a Low Resistance by Carey Foster Bridge

Unit V: Network Theorems

(at least one experiment)

- To verify the Thevenin and Norton theorems
- To verify the Superposition, and Maximum Power Transfer Theorems

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
- 3) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th Ed.2011, Kitab Mahal
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 12): THERMAL PHYSICS

Course Title	Credits	Cre	dit distri of the cou	bution rse	Eligibility	Pre-requisite	Department
& Code	CT curts	Lecture	Tutorial	Practical	criteria	of the course	course
Thermal Physics	4	3	0	1	Class XII pass	NIL	Physics and Astrophysics
GE – 12							

LEARNING OBJECTIVES

This course will review the basic concepts of thermodynamics, kinetic theory of gases with a brief introduction to statistical mechanics. The primary goal is to understand the applications of fundamental laws of thermodynamics to various systems and processes. This coursework will also enable the students to understand the connection between the macroscopic observations of physical systems and microscopic behaviour of atoms and molecule through statistical mechanics.

LEARNING OUTCOMES

At the end of this course, students will,

- Get an essence of the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations. They are also expected to learn Maxwell's thermodynamic relations.
- Know the fundamentals of the kinetic theory of gases, Maxwell-Boltzman distribution law, mean free path of molecular collisions, viscosity, thermal conductivity and diffusion.
- Learn about the black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances.
- Learn the basics of quantum statistical distributions, viz., the Bose-Einstein statistics and the Fermi-Dirac statistics.

In the laboratory course, the students are expected to measure of Planck's constant using black body radiation, determine Stefan's constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of resistance, study variation of thermo-emf across two junctions of a thermocouple with temperature etc.

<u>SYLLABUS OF GE – 12</u>

THEORY COMPONENT

Unit 1: (12 Hours)

Laws of Thermodynamics: Fundamental basics of Thermodynamic system and variables, Zeroth Law of Thermodynamics and temperature, First law and internal energy, various thermodynamical processes, Applications of First Law: general relation between C_P and C_V , work done during various processes, Compressibility and Expansion Coefficient, reversible and irreversible processes, Second law: Kelvin-Planck and Clausius statements, Carnot engine, Carnot cycle and theorem, basic concept of Entropy, Entropy changes in reversible and irreversible processes, Clausius inequality, Entropy-temperature diagrams.

Unit 2: (08 Hours)

Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Clausius Clapeyron Equation, Expression for $(C_P - C_V)$, C_P/C_V , TdS equations, energy equations for ideal gases.

Unit 3: (8 Hours)

Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (zeroth order only), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case).

Unit 4: (7 Hours)

Theory of Radiation: Blackbody radiation, Spectral distribution, Derivation of Planck's law, Deduction of Wien's law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.

Unit 5: (10 Hours)

Statistical Mechanics: Macrostate and Microstate, phase space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann law, Fermi-Dirac distribution law - Bose-Einstein distribution law - comparison of three statistics.

References:

Essential Readings:

- 1) A Treatise on Heat, Meghnad Saha, and B. N. Srivastava, 1969, Indian Press.
- 2) Heat and Thermodynamics, M. W. Zemasky and R. Dittman, 1981, McGraw Hill.
- 3) Thermodynamics, Kinetic theory and statistical thermodynamics, F. W. Sears and G. L. Salinger. 1988, Narosa.
- 4) Thermal Physics, A. Kumar and S. P. Taneja, 2014, R. Chand Publications.
- 5) Thermal Physics: S. C. Garg, R. M. Bansal and C.K. Ghosh, 2nd Ed. Tata McGraw-Hill.

Additional Readings:

1) Concepts in Thermal Physics: Blundell and Blundell, 2nd Ed. 2009, Oxford Univ. Press.

- 2) An Introduction to Thermal Physics: D. Schroeder 2021, Oxford Univ. Press (earlier published by Pearsons).
- 3) Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam and P. S. Hemne, S. Chand and Company.

PRACTICAL COMPONENT- 30 Hours

- Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the thermal physics lab, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

Every student must perform at least four experiments from the following list.

- 1) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2) Measurement of Planck's constant using black body radiation.
- 3) To determine Stefan's Constant.
- 4) To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.
- 5) To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method by steam or electrical heating.
- 6) To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- 7) To study the variation of thermos-emf across two junctions of a thermocouple with temperature.

References (For Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal.
- 3) A Laboratory Manual of Physics for Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publication.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5) An Advanced Course in Practical Physics: D. Chattopadhyay and P. C. Rakshit, New Central Book Agency

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 13): MODERN PHYSICS

Credits	Credit distribution of the course			Eligibility	Pre-requisite	
creates	Lecture	Tutorial	Practical	criteria	of the course	
			_			
4	3	0	1	Class XII pass	NIL	
	Credits	Credits Credits Lecture 4 3	Credit distributionCreditCredit distributionCreditCredit distributionLectureTutorial430	Credit distribution of the courseLectureTutorialPractical4301	Credit distribution of the courseEligibility criteriaLectureTutorialPracticalEligibility criteria4301Class XII pass	

LEARNING OBJECTIVES

The objective of this course is to teach the physics foundation necessary for learning various topics in modern physics which are crucial for understanding atoms, molecules, photons, nuclei and elementary particles. These concepts are also important to understand phenomena in Laser physics, condensed matter physics and astrophysics.

LEARNING OUTCOMES

After getting exposure to this course, the following topics would have learnt,

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics, laying the foundation of modern physics.
- Formulation of Schrodinger equation and the idea of probability interpretation associated with wave-functions.
- The spontaneous and stimulated emission of radiation, optical pumping and population inversion, Basic lasing action.
- The properties of nuclei like density, size, binding energy, nuclear force and structure of atomic nucleus, liquid drop model and mass formula.
- Radioactive decays like alpha, beta, gamma decay. Neutrino, its properties and its role in theory of beta decay.
- Fission and fusion: Nuclear processes to produce nuclear energy in nuclear reactor and stellar energy in stars.

In the laboratory course, the students will get opportunity to measure Planck's constant, verify photoelectric effect, and determine e/m of electron and work function of a metal. They will also find wavelength of Laser sources by single and double slit experiment, wavelength and angular spread of He-Ne Laser using plane diffraction grating.

<u>SYLLABUS OF GE – 13</u>

THEORY COMPONENT

Unit 1: (10 Hours)

Origin of Modern Physics: Blackbody Radiation: Failure of explanation from classical theory; Planck's idea of a quantum; Quantum theory of Light: Photo-electric effect and Compton scattering, de Broglie wavelength and matter waves; Davisson-Germer experiment; Wave description of particles by wave packets, Group and Phase velocities and relation between them.

Unit 2: (10 Hours)

Problems with Rutherford model: Instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen-like atoms and their spectra.

Uncertainty principle: Gamma ray microscope thought experiment; Wave-particle duality leading to Heisenberg uncertainty principle; Impossibility of an electron being in the nucleus, Energy-time uncertainty principle; origin of natural width of emission lines

Unit 3: (10 Hours)

Basics of quantum Mechanics: Two-slit interference experiment with photons and electrons; Concept of wave functions, linearity and superposition, Time independent Schrodinger wave equation for non-relativistic particles; Momentum and Energy operators; physical interpretation of a wave function, probabilities, normalization and probability current densities in one dimension. Problem: One dimensional infinitely rigid box. An application: Quantum dot.

Unit 4: (05 Hours)

X-rays: Ionizing Power, X-ray Diffraction, Bragg's Law. Critical Potentials, X-rays-Spectra: Continuous and Characteristic X-rays, Moseley's Law.

LASERs: Properties and applications of Lasers. Emission (spontaneous and stimulated emissions) and absorption processes, Metastable states, components of a laser and lasing action.

Unit 5: (10 Hours)

Nuclear Physics: Size and structure of atomic nucleus and its relation with atomic weight; Nature of nuclear force, Stability of the nucleus; N-Z graph, Drip line nuclei, Binding Energy, Liquid Drop model: semi-empirical mass formula.

Radioactivity: Different equilibrium, Alpha decay; Beta decay: energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation:

Fission and fusion: Mass deficit and generation of energy; Fission: nature of fragments and emission of neutrons. Fusion and thermonuclear reactions driving stellar evolution (brief qualitative discussions only).

References:

Essential Readings:

- 1) Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 2) Modern Physics by R. A. Serway, C. J. Moses and C. A. Moyer, 3rd edition, Thomson Brooks Cole, 2012.
- 3) Modern Physics for Scientists and Engineers by S. T. Thornton and A Rex, 4th edition, Cengage Learning, 2013.
- 4) Concepts of Nuclear Physics by B. L. Cohen, Tata McGraw Hill Publication, 1974.
- 5) Quantum Mechanics: Theory and Applications, Ajoy Ghatak and S. Lokanathan, Laxmi Publications, 2019

Additional Readings:

- 1) Six Ideas that Shaped Physics: Particle Behave like Waves, T.A. Moore, 2003, McGraw Hill.
- 2) Thirty years that shook physics: the story of quantum theory, George Gamow, Garden City, NY: Doubleday, 1966.
- 3) New Physics, ed. Paul Davies, Cambridge University Press (1989).
- 4) Quantum Theory, David Bohm, Dover Publications, 1979.
- 5) Lectures on Quantum Mechanics: Fundamentals and Applications, eds. A. Pathak and Ajoy Ghatak, Viva Books Pvt. Ltd., 2019
- 6) Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- 7) Basic ideas and concepts in Nuclear Physics: An introductory approach by K Heyde, third edition, IOP Publication, 1999.

PRACTICAL COMPONENT – 30 Hours

- Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the modern physics lab, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

Every student must perform at least 06 experiments from the following list of experiments.

- 1) Measurement of Planck's constant using black body radiation and photo-detector.
- 2) Photo-electric effect: estimate Planck's constant using graph of maximum energy of photoelectrons versus frequency of light.
- 3) To determine work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs, using at least 4 LEDs.
- 5) To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 7) To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 8) To show the tunneling effect in tunnel diode using I-V characteristics.
- 9) To determine the wavelength of laser source using diffraction of single slit.

10) To determine wavelength and angular spread of He-Ne laser using plane diffraction grating.11) To determine the wavelength of laser source using diffraction of double slits.

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) Advanced Level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 3) A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- 4) Practical Physics, G. L. Squires, 2015, 4th Edition, Cambridge University Press.
- 5) B. Sc. Practical Physics, Geeta Sanon, R. Chand, 2016.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVE (GE - 14): INTRODUCTORY ASTRONOMY

Course Title & Code	Credits	Cre	dit distril of the cou	bution rse	Eligibility	Pre-requisite	
	creates	Lecture		Practical	criteria	of the course	
Introductory Astronomy	4	3	1	0	Class XII pass	NIL	
GE – 14					_		

LEARNING OBJECTIVES

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics, and more recently chemistry and biology. They will be introduced to the Indian contribution to astronomy starting from ancient times up to the modern era. They will learn about diverse set of astronomical phenomenon, from the daily and yearly motion of stars and planets in the night sky which they can observe themselves, to the expansion of the universe deduced from the latest observations and cosmological models. Students will also be introduced to internet astronomy and the citizen science research platform in astronomy. The course presupposes school level understanding of mathematics and physics.

LEARNING OUTCOMES

After completing this course, student will gain an understanding of,

- Different types of telescopes, diurnal and yearly motion of astronomical objects, astronomical coordinate systems and their transformations
- Brightness scale for stars, types of stars, their structure and evolution on HR diagram
- Components of solar system and its evolution
- Current research in detection of exoplanets
- Basic structure of different galaxies and rotation of the Milky Way galaxy
- Distribution of chemical compounds in the interstellar medium and astrophysical conditions necessary for the emergence and existence of life
- Internet based astronomy and the collaborative citizen astronomy projects
- India's contribution to astronomy, both in ancient times and in modern era.

<u>SYLLABUS OF GE – 14 (Lecture-45 hours)</u>

THEORY COMPONENT

Unit 1:

Introduction to Astronomy and Astronomical Scales: History of astronomy, wonders of the Universe, overview of the night sky, diurnal and yearly motions of the Sun, size, mass, density and temperature of astronomical objects, basic concepts of positional astronomy: Celestial sphere, Astronomical coordinate systems, Horizon system and Equatorial system

Unit 2:

Basic Parameters of Stars: Stellar energy sources, determination of distance by parallax method, aberration, proper motion, brightness, radiant flux and luminosity, apparent and absolute magnitude scales, distance modulus, determination of stellar temperature and radius, basic results of Saha ionization formula and its applications for stellar astrophysics, stellar spectra, dependence of spectral types on temperature, luminosity classification, stellar evolutionary track on Hertzsprung-Russell diagram

Unit 3:

Astronomical Instruments: Observing through the atmosphere (Scintillation, Seeing, Atmospheric Windows and Extinction). Basic Optical Definitions for Telescopes: Magnification, Light Gathering Power, Limiting magnitude, Resolving Power, Diffraction Limit. Optical telescopes, radio telescopes, Hubble space telescope, James Web space telescope, Fermi Gamma ray space telescope.

Astronomy in the Internet Age: Overview of Aladin Sky Atlas, Astrometrica, Sloan Digital Sky Survey, Stellarium, virtual telescope

Citizen Science Initiatives: Galaxy Zoo, SETI@Home, RAD@Home India

Unit 4:

Sun and the solar system: Solar parameters, Sun's internal structure, solar photosphere, solar atmosphere, chromosphere, corona, solar activity, origin of the solar system, the nebular model, tidal forces and planetary rings

Exoplanets: Detection methods

Unit 5:

Physics of Galaxies: Basic structure and properties of different types of Galaxies, Nature of rotation of the Milky Way (Differential rotation of the Galaxy), Idea of dark matter Cosmology and Astrobiology: Standard Candles (Cepheids and SNe Type1a), Cosmic distance ladder, Olber's paradox, Hubble's expansion, History of the Universe, Chemistry of life, Origin of life, Chances of life in the solar system

Unit 6:

Astronomy in India: Astronomy in ancient, medieval and early telescopic era of India, current Indian observatories (Hanle-Indian Astronomical Observatory, Devasthal Observatory, Vainu Bappu Observatory, Mount Abu Infrared Observatory, Gauribidanur Radio Observatory, Giant Metre-wave Radio Telescope, Udaipur Solar Observatory, LIGO-India) (qualitative discussion), Indian astronomy missions (Astrosat, Aditya)

References:

Essential Readings:

- 1) Seven Wonders of the Cosmos, Jayant V Narlikar, Cambridge University Press
- 2) Fundamental of Astronomy, H. Karttunen et al. Springer
- 3) Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison-Wesley Publishing Co.
- 4) Introductory Astronomy and Astrophysics, M. Zeilik and S. A. Gregory, Saunders College Publishing.
- 5) The Molecular Universe, A. G. G. M. Tielens (Sections I, II and III), Reviews of Modern Physics, Volume 85, July-September, 2013
- 6) Astronomy in India: A Historical Perspective, Thanu Padmanabhan, Springer

Useful websites for astronomy education and citizen science research platform

- 1) https://aladin.u-strasbg.fr/
- 2) http://www.astrometrica.at/
- 3) https://www.sdss.org/
- 4) http://stellarium.org/
- 5) https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
- 6) https://setiathome.berkeley.edu/
- 7) https://www.radathomeindia.org/

Additional Readings:

1) Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider, McGraw

Hill

- 2) Astrophysics Stars and Galaxies K. D. Abhyankar, Universities Press
- 3) Textbook of Astronomy and Astrophysics with elements of cosmology, V. B. Bhatia, Narosa Publication.
- 4) Baidyanath Basu, An introduction to Astrophysics, Prentice Hall of India Private Limited.
- 5) The Physical Universe: An Introduction to Astronomy, F. H. Shu, University Science Books

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DEPARTMENT OF PHYSICS B. SC. (HONOURS) PHYSICS

DISCIPLINE SPECIFIC CORE COURSE – DSC - 7: MATHEMATICAL PHYSICS III

Course Title	Credits	Credit distribution		ion of the	Eligibility	Pre-requisite of the
& Code		Lecture	Tutorial	Practical	Criteria	course
Mathematical Physics III	4	3	0	1	Class 12 th Pass	Should have studied DSC - 1 and DSC - 4 of this program or its
DSC - 7						equivalent

LEARNING OBJECTIVES

The emphasis of course is on applications in solving problems of interest to physicists. The course will also expose students to fundamental computational physics skills enabling them to solve a wide range of physics problems. The skills developed during course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Determine continuity, differentiability and analyticity of a complex function, find the derivative of a function and understand the properties of elementary complex functions.
- Work with multi-valued functions (logarithmic, complex power, inverse trigonometric function) and determine branches of these functions.
- Evaluate a contour integral using parameterization, fundamental theorem of calculus and Cauchy's integral formula.
- Find the Taylor series of a function and determine its radius of convergence.
- Determine the Laurent series expansion of a function in different regions, find the residues and use the residue theory to evaluate a contour integral and real integral.
- Understand the properties of Fourier transforms and use these to solve boundary value problems.
- Solve linear partial differential equations of second order with separation of variable method.
- In the laboratory course, the students will learn to,
 - create, visualize and use complex numbers
 - use Gauss quadrature methods to numerically integrate proper and improper definite integrals
 - Solve the boundary value problems numerically
 - Compute the fast Fourier transform of a given function

<u>SYLLABUS OF DSC – 7</u>

THEORY COMPONENT

Unit - I

Complex Analysis: The field of complex numbers. Graphical, Cartesian and polar representation. Algebra in the complex plane. Triangle inequality. Roots of complex numbers. Regions in the complex plane - idea of open sets, closed sets, connected sets, bounded sets and domain.

(3 Hours) The complex functions and mappings. Limits of complex functions. Extended complex plane and limits involving the point at infinity. Continuity and differentiability of a complex function, Cauchy-Riemann equations in Cartesian and polar coordinates, sufficient conditions for differentiability, harmonic functions. Analytic functions, singular points. Elementary functions. Multi-functions, branch cuts and branch points.

(10 Hours) Integration in complex plane: contours and contour integrals, Cauchy-Goursat Theorem (No proof) for simply and multiply connected domains. Cauchy's inequality. Cauchy's integral formula. Taylor's and Laurent's theorems (statements only), types of singularities (removable poles and essential), meromorphic functions, residues and Cauchy's residue theorem, Jordan Lemma (statement only), evaluation of real integrals by contour integration (excluding integrands with branch points)

(15 Hours)

Unit – II

Fourier Transform: Fourier Integral theorem (Statement only), Fourier Transform (FT) and Inverse FT, existence of FT, FT of single pulse, finite sine train, trigonometric, exponential, Gaussian functions, properties of FT, FT of Dirac delta function, sine and cosine function, convolution theorem. Fourier Sine Transform (FST) and Fourier Cosine Transform (FCT)

Unit – III

(8 Hours)

Partial Differential Equations: Solutions to partial differential equations (2 or 3 independent variables) using separation of variables: Laplace's equation in problems of rectangular geometry. Solution of wave equation for vibrational modes of a stretched string. Solution of 1D heat flow equation (Wave/Heat equation not to be derived)

References:

Essential Readings:

- 1) Mathematical methods for Scientists and Engineers, D.A. McQuarrie, Viva Book, 2003
- 2) Essential Mathematical Methods, K. F. Riley and M. P. Hobson, Cambridge Univ. Press, 2011
- 3) Mathematical Methods for Physicists, G. B. Arfken, H.J. Weber, F. E. Harris, 7th Edition, Elsevier, 2013
- 4) Complex Variables and Applications, J. W. Brown and R. V. Churchill, 9th Edition, Tata McGraw-Hill, 2021
- 5) Complex Variables: Schaum's Outline, McGraw Hill Education, 2009
- 6) Fourier analysis: With Applications to Boundary Value Problems, Murray Spiegel, McGraw Hill Education, 2017
- 7) Fourier series and boundary value problems, J. W. Brown and R. V. Churchill, 5th

(28 Hours)

311

(9 Hours)
Edition, Tata McGraw-Hill, 1993.

8) Applied Mathematics for Engineers and Physicists, 3rd edition, L. A. Pipes and L. R. Harvill, Dover Publications.

Additional Readings:

- 1) Mathematical Physics with Applications, Problems and Solutions, V. Balakrishnan, Ane Books, 2017
- Complex Variables, A. S. Fokas and M. J. Ablowitz, 8th Edition, Cambridge Univ. Press, 2011
- 3) Fourier Transform and its Applications, third edition, Ronald New Bold Bracewell, McGraw Hill, 2000
- 4) A Students Guide to Fourier Transforms: With Applications in Physics and Engineering, 3rd edition, Cambridge University Press, 2015
- 5) Partial Differential Equations for Scientists and Engineers, S. J. Farlow, Dover Publications, 1993
- 6) Differential Equations Theory, technique and practice, George F. Simmons and Steven G. Krantz, Indian Edition McGraw Hill Education Pvt. Ltd, 2014

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

The aim of this lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- The course will consist of practical sessions and lectures on the related theoretical aspects of the laboratory.
- Assessment is to be done not only on the programming but also on the basis of formulating the problem.
- The list of recommended programs is suggestive only. More programs may be done in the class with physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve it by computational methods.
- At least 6 programs must be attempted (taking at least one from each unit). The implementation can be either in Python/ C++/ Scilab. Inbuilt libraries can be used wherever applicable.

Unit 1

Handling of Complex Numbers: Syntax for creating complex numbers in Python/C++/Scilab, accessing real and imaginary parts, calculating the modulus and conjugate of a complex number, complex number arithmetic, plotting of complex numbers as ordered pairs of real numbers in a plane, conversion from Cartesian to polar representation.

Recommended List of Programs:

- a) Determine the nth roots of a complex number and represent it in Cartesian and polar form.
- b) Transformation of complex numbers as 2-D vectors e.g. translation, scaling, rotation, reflection.
- c) Visualisation of mappings of some elementary complex functions w = f(z) from z-plane to w-plane.

Unit 2

Gauss Quadrature Integration Methods: Gauss quadrature methods for integration: Gauss Legendre, Gauss Lagaurre and Gauss Hermite methods.

Recommended List of Programs:

- a) Solving a definite integral by Gauss Legendre quadrature method. Application representation of a function as a linear combination of Legendre polynomials.
- b) Solving improper integrals over entire real axis or the positive real axis using Gauss Lagaurre and Gauss Hermite quadrature method. Comparison of results with the ones obtained by contour integration analytically.
- c) Comparison of convergence of improper integral computed by Newton Cotes and Gauss Quadrature Methods.

Unit 3

Fast Fourier Transform: Discrete Fourier transform, Any algorithm for fast Fourier transform.

- a) Computation of Discrete Fourier Transform (DFT) using complex numbers.
- b) Fast Fourier Transform of given function in tabulated or mathematical form e.g function $exp(-x^2)$.

Unit 4

Numerical Solutions of Boundary Value Problems: Two-point boundary value problems, types of boundary conditions – (Dirichlet, Neumann and Robin), importance of converting a physics problem to dimensionless form before solving numerically. Finite difference method, Shooting method with bisection/Secant/Newton method for solving non-linear equation and using RK methods for solving IVP (The programs developed in the last semester may be used here).

Algorithm for any one numerical method to solve Partial Differential Equations e.g. Finite Difference method, relaxation methods, Crank-Nicolson method

Recommended List of Programs:

- (a) The equilibrium temperature of a bar of length L with insulated horizontal sides and the ends maintained at fixed temperatures.
- (b) Solve for the steady state concentration profile y(x) in the reaction-diffusion problem given by y''(x) y(x) = 0 with y(0) = 1, y'(1) = 0.
- (c) Use any numerical method to solve Laplace equation/ Wave equation/ Heat equation.

References (for Laboratory Work):

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 3) Schaum's Outline of Programming with C++, J. Hubbard, 2000, McGraw-Hill Education.
- 4) An Introduction to Computational Physics, T. Pang, Cambridge University Press, 2010
- Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, 2012, PHI Learning Pvt. Ltd.
- 6) Numerical Recipes: The art of scientific computing, William H. Press, Saul A. Teukolsky and William Vetterling, Cambridge University Press; 3rd Edition, 2007
- 7) Computational Problems for Physics, R. H. Landau and M. J. Páez, CRC Press, 2018

DISCIPLINE SPECIFIC CORE COURSE – DSC - 8: THERMAL PHYSICS

Course Title	Credits	Credit	t distributi course	ion of the	Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical	Criteria	of the course
Thermal Physics	4	3	0	1	Class 12 th Pass	NIL
DSC - 8						

LEARNING OBJECTIVES

This course deals with the relationship between the macroscopic and microscopic properties of physical systems in equilibrium. It reviews the concepts of thermodynamics learnt at school from a more advanced perspective and how to develop them further to build new concepts. The course gives an understanding about the fundamental laws of thermodynamics and their applications to various systems and processes. It also includes a basic idea about the kinetic theory of gases, transport phenomena involved in ideal gases, phase transitions and behaviour of real gases. The students will be able to apply these concepts to several problems on heat. The lab course deals with providing the knowledge of the concepts of thermodynamics studied in the theory paper with the help of experiments and give the students a hands-on experience on the construction and use of specific measurement instruments and experimental apparatuses used in the Thermal Physics lab, including necessary precautions.

LEARNING OUTCOMES

At the end of this course, students will be able to

- Comprehend the basic concepts of thermodynamics, the first and the second law of thermodynamics.
- Understand the concept of reversibility, irreversibility and entropy.
- Understand various thermodynamic potentials and their physical significance with respect to different thermodynamic systems and processes.
- Deduce Maxwell's thermodynamical relations and use them for solving various problems in Thermodynamics.
- Understand the concept and behaviour of ideal and real gases.
- Apply the basic concept of kinetic theory of gases in deriving Maxwell-Boltzmann distribution law and its applications.
- Understand mean free path and molecular collisions in viscosity, thermal conductivity, diffusion and Brownian motion.
- While doing the practical, the students will have an opportunity to understand and hence use the specific apparatus required to study various concepts of thermodynamics. Hence, the student will be able to comprehend the errors they can encounter while performing the experiment and how to estimate them.

(7 Hours)

SYLLABUS OF DSC - 8

THEORY COMPONENT

Unit – I - Zeroth and First Law of Thermodynamics

Fundamental idea of thermodynamic equilibrium and Zeroth Law of Thermodynamics, concept of work and heat, First law of Thermodynamics and its differential form, internal energy, applications of First law: General relation between CP and Cv, work done during various processes (all four) and related problems, adiabatic lapse rate, Compressibility and Expansion Co-efficient for various processes.

Unit - II - Second law of Thermodynamics

Reversible and Irreversible processes, Carnot engine and Carnot's cycle, Refrigerator, efficiency of Carnot engine and refrigerator, Second Law of Thermodynamics: Kelvin-Planck and Clausius statements and their equivalence, Carnot's theorem, Applications of Second Law of Thermodynamics in the light of Phase Change, Thermodynamic Scale of Temperature and its equivalence to Perfect Gas Scale.

Unit – III – Entropy

Concept of Entropy, Entropy changes in Reversible and Irreversible processes with examples, Clausius Theorem, Clausius inequality, Second Law of Thermodynamics in terms of Entropy. Temperature-Entropy diagrams for Carnot's cycle and related problems, Entropy of perfect and real gases, conceptual problems related to Entropy during a Phase Change, Nernst Heat Theorem: Unattainability of Absolute Zero and Third Law of Thermodynamics.

Unit – IV - Thermodynamic Potentials and Maxwell's Relations

(12 Hours) Basic concept of Thermodynamic Potentials, Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy, Magnetic work and basic idea about cooling due to adiabatic demagnetization, Phase Transitions : First order and Second order Phase Transitions with examples, Clausius Clapeyron Equation, Ehrenfest Equations, Derivation of Maxwell's Thermodynamic Relations and their applications in Clausius Clapeyron Equation, value of CP - Cv, TdS equations, Energy equations, evaluation of CP /Cv and Ratio of Adiabatic to Isothermal elasticity.

Unit – V - Kinetic Theory of Gases and Molecular Collisions (8 Hours)

Constrained maximization using Lagrange multipliers, Maxwell-Boltzmann law of distribution of velocities in an ideal gas and its experimental verification with any one method. Mean, Root Mean Square and Most Probable Speeds, Maxwell-Boltzmann equation for distribution of Energy: Average Energy and Most Probable Energy, Mean Free Path, Collision Probability, estimation of Mean Free Path, transport phenomena in ideal gases: viscosity, thermal conductivity and diffusion with continuity equation

Unit – VI - Real Gases

Behaviour of Real Gases: Deviations from the ideal gas equation, Andrew's experiments on CO₂ Gas, Virial equation, Continuity of liquid and gaseous states, Boyle temperature, Van der Waals equation of state for real gases (derivation not required), comparison with experimental curves: P-V diagrams, value of critical constants, law of corresponding states, free adiabatic expansion of a perfect gas, Joule Thomson Porous - Plug Experiment, Joule Thomson Coefficient for Ideal and Van der Waals Gases, Temperature of Inversion and Joule Thomson cooling.

(6 Hours)

(6 Hours)

(6 Hours)

References:

Essential Readings:

- 1) Heat and Thermodynamics: M. W. Zemansky and R. Dittman, Tata McGraw-Hill, 1981
- 2) Thermal Physics: S. C. Garg, R. M. Bansal and C. K. Ghosh, 2nd Edition, Tata McGraw-Hill.
- 3) Thermodynamics, Kinetic Theory and Statistical Thermodynamics: Sears and Salinger, Narosa, 1988
- 4) Concepts in Thermal Physics: Blundell and Blundell, 2nd Edition, Oxford University Press, 2009
- 5) Thermal Physics, A. Kumar and S. P. Taneja, R. Chand Publications, 2014
- 6) A Text Book of Heat and Thermodynamics for Degree Students, J. B. Rajam, S. Chand, 1981

Additional Readings:

- 1) An Introduction to Thermal Physics: D. Schroeder, Oxford University Press (earlier published by Pearsons), 2021
- 2) Thermal Physics: C. Kittel and H. Kroemer, 2nd Edition, W.H. Freeman, 1980
- 3) Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam and P. S. Hemne, S. Chand and Company
- 4) Thermal Physics: Concepts and practices, A. L. Wasserman, Cambridge University Press, 2012
- 5) Fundamentals of Thermal and Statistical Physics, Frederick Reif, McGraw-Hill, 1965

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

At least six experiments to be done from the following:

- 1) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2) To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3) To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method using steam or electrical heating.
- 4) To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT) using Carey Foster's Bridge.
- 5) To determine the Temperature Coefficient of Resistance using Platinum Resistance Thermometer (PRT) by Callender-Griffith Bridge.
- 6) To study the variation of thermo-e.m.f. of a thermocouple with difference of temperature of its two junctions using a null method.
- 7) To calibrate a thermocouple to measure temperature in a specified range by direct method and/or by using Op Amp and to determine Neutral Temperature.
- 8) To determine the coefficient of thermal conductivity of Copper (Cu) by Angstrom's method.

References (for Laboratory Work):

1) Advanced Practical Physics for students: B. L. Flint and H. T. Worsnop, Asia Publishing House, 1971

- 2) A Text Book of Practical Physics : Indu Prakash and Ramakrishna, 11th Edition, Kitab Mahal
- Advanced level Practical Physics: Nelkon and Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 4) An Advanced Course in Practical Physics: D. Chattopadhyay and P. C. Rakshit, New Central Book Agency, 1990
- 5) Practical Physics: G. L. Squires, Cambridge University Press, 1985
- 6) B. Sc Practical Physics: Harnam Singh, P. S. Hemne, revised edition 2011, S. Chand and Co.
- 7) B. Sc Practical Physics: C. L. Arora, 2001, S. Chand and Co.
- 8) B.Sc. Practical Physics: Geeta Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC CORE COURSE – DSC - 9: LIGHT AND MATTER

Course Title	Credits	Credi	t distributi course	ion of the	Eligibility	Pre-requisite	
& Code		Lecture	Tutorial	Practical	Criteria	of the course	
Light and Matter	4	2	0	2	Class 12 th Pass	NIL	
DSC - 9							

LEARNING OBJECTIVES

The objective of this course reviews the concepts of light and matter, their properties and their dual nature. This course provides an in depth understanding of dual nature of light, interference and diffraction with emphasis on practical applications of both. It prepares the student for the modern physics and quantum mechanics courses.

LEARNING OUTCOMES

On successfully completing the requirement of this course the student will have the skill and knowledge to,

- Appreciate the dual nature of light which is part of the electromagnetic spectrum and the dual nature of matter simultaneously.
- Understand the phenomena of interference and diffraction exhibited by light and matter, their nuances and details.
- Delve in to the depth of understanding wave optics with its various kinds of interference and diffraction exhibited by light.
- Demonstrate basic concepts of diffraction: Superposition of wavelets diffracted from aperture, understand Fraunhofer and Fresnel diffraction.
- Learn about the application of matter waves in latest technological developments of electron microscope e.g. SEM and TEM used widely for characterization in several fields of physics such as material science, nanotechnology etc.
- In the laboratory course, students will gain hands-on experience of using various optical instruments, measurement of resolving power and dispersive power, and making finer measurements of wavelength of light using Newton's rings experiment. They will also find wavelength of Laser sources by single and double slit experiment, wavelength and angular spread of He-Ne Laser using plane diffraction grating.

SYLLABUS OF DSC - 9

THEORY COMPONENT

Unit – I - Duality of Light and matter

(5 Hours)

Light an EM wave - Hertz's experiments; Particle characteristics by photoelectric effect and Compton effect (concepts only) and wave characteristics by interference and diffraction. Wave properties of particles: de Broglie hypothesis, wavelength of matter waves; particle wave complementarity: Velocity of de Broglie wave and need of a wave packet; Group and phase velocities and relation between them; equivalence of group and particle velocity, dispersion of wave groups.

Unit – II – Interference

Division of amplitude and wave-front. Two-slit interference experiment with photons: Young's double slit experiment. Lloyd's mirror. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringe). Newton's Rings: Measurement of wavelength and refractive index. Single photon interference. Two-slit interference experiment with electrons.

Unit – III – Diffraction

Fraunhofer diffraction: Single slit, double slit, diffraction grating, resolving power of grating. Fresnel diffraction: Fresnel's assumptions, Fresnel's half-period zones for plane wave, explanation of rectilinear propagation of light, theory of a zone plate: multiple foci of a zone plate, Fresnel diffraction at straight edge, a slit and a wire by Fresnel half period zones.

Diffraction of photons (e.g. X-rays, gamma rays etc.) and particles by matter, experimental study of matter waves: Davisson-Germer experiment; Electron microscope: applications SEM, TEM.

References:

Essential Readings:

- 1) Concepts of Modern Physics, Arthur Beiser, McGraw-Hill, 2002
- 2) Modern Physics by R. A. Serway, C. J. Moses and C. A. Moyer, Thomson Brooks Cole, 2012
- Modern Physics for Scientists and Engineers by S. T. Thornton and A. Rex, 4th Edition, Cengage Learning, 2013
- 4) Optics, Ajoy Ghatak, McGraw-Hill Education, New Delhi, 7th Edition
- 5) Fundamentals of Optics, F. A. Jenkins and H. E. White, McGraw-Hill, 1981
- 6) Fundamental of Optics, A. Kumar, H. R. Gulati and D. R. Khanna, R. Chand Publications, 2011
- 7) A Textbook of Optics N. Subrahmanyam, Brij Lal, M. N. Avadhanulu, S. Chand & Co Ltd.
- 8) Introduction to Optics I Interaction of Light with Matter, Ksenia Dolgaleva, Morgan and Claypool, 2021
- 9) Physics for scientists and Engineers with Modern Physics, Jewett and Serway, Cengage Learning, 2010
- 10) Modern Physics, G. Kaur and G. R. Pickrell, McGraw Hill, 2014
- 11) Schaum's Outline of Beginning Physics II: Waves, electromagnetism, Optics and Modern Physics, Alvin Halpern, Erich Erlbach, McGraw Hill.
- 12) Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edition, Tata McGraw-Hill Publishing Co. Ltd.

Additional Readings:

- 1) Principles of Optics, Max Born and Emil Wolf, 7th Edition, Pergamon Press, 1999
- 2) Introduction to Optics, Pedrotti Frank L. Cambridge University Press.
- 3) Optics, Eugene Hecht, 4th Edition, Pearson Education, 2014
- 4) Six Ideas that Shaped Physics: Particle Behave like Waves, T. A. Moore, McGraw Hill, 2003

(10 Hours)

(15 Hours)

319

- 5) Thirty years that shook physics: the story of quantum theory, George Gamow, Garden City, NY: Doubleday, 1966.
- 6) Quantum Mechanics: Theory and Applications, (Extensively revised 6th Edition), Ajoy Ghatak and S. Lokanathan, Laxmi Publications, 2019
- 7) Optics, Karl Dieter Moller, Learning by computing with model examples, Springer, 2007
- 8) Modern Physics for Scientists and Engineers, J. R. Taylor, C. D. Zafiratos, M. A. Dubson, Viva Books Pvt Ltd, 2017
- 9) Physics of Atom, Wehr, Richards and Adair, Narosa, 2002

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Mandatory activity:

- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Applications of the specific experiments done in the lab.
- Familiarization with Schuster's focusing; determination of angle of prism.

At least 6 experiments from the following list.

- 1) Determination of refractive index of material of prism using mercury (Hg) light.
- 2) To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 3) To determine wavelength of sodium light using Newton's Rings.
- 4) To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 5) To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 6) To determine dispersive power of a plane diffraction grating using mercury lamp.
- 7) To determine resolving power of a plane diffraction grating using sodium lamp.
- 8) To determine the wavelength of laser source using diffraction of single slit.
- 9) To determine the wavelength of laser source using diffraction of double slit.
- 10) To determine wavelength and angular spread of He-Ne laser using plane diffraction grating.

References (for Laboratory Work):

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal.
- 3) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- A Laboratory Manual of Physics for undergraduate classes, D. P. Khandelwal, 1985, Vani Pub
- 5) B.Sc. Practical Physics, Geeta Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 1: BIOPHYSICS

Course Title	Credits	Credit distribution of the course		Credit distribution of the course		Pre-requisite	
& Code		Lecture	Tutorial	Practical	Criteria	of the course	
Biophysics	4	3	0	1	Class XII	NIL	
DSE - 1					r ass		

LEARNING OBJECTIVES

This course familiarizes the students with the basic facts and ideas of biology from a quantitative perspective. It shows them how ideas and methods of physics enrich our understanding of biological systems at diverse length and time scales. The course also gives them a flavour of the interface between biology, chemistry, physics and mathematics.

LEARNING OUTCOMES

After completing this course, students will

- Know basic facts about biological systems, including single cells, multicellular organisms and ecosystems from a quantitative perspective.
- Gain familiarity with various biological processes at different length and time scales, including molecular processes, organism level processes and evolution.
- Be able to apply the principles of physics from areas such as mechanics, electricity and magnetism, thermodynamics, statistical mechanics, and dynamical systems to understand certain living processes.
- Get exposure to complexity of life at i) the level of cell, ii) level of multi cellular organism and iii) at macroscopic system ecosystem and biosphere.
- Gain a systems level perspective on organisms and appreciate how networks of interactions of many components give rise to complex behaviour.
- Perform mathematical and computational modelling of certain aspects of living systems.
- Get exposure to models of evolution.
- Be able to perform experiments demonstrating certain physical processes that occur in living systems.

<u>SYLLABUS OF DSE – 1</u>

THEORY COMPONENT

Unit – I

(4 Hours)

Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self-replication as a distinct property of biological systems. Time scales and spatial scales.

Unit - II

Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation.

Unit - III

Molecular motion in cells: Random walks and applications to biology: Diffusion; models of macromolecules. Mechanical, entropic and chemical forces: Osmosis, cell assembly, molecular motors, bacterial chemotaxis.

Unit - IV

The complexity of life: At the level of a cell: Intracellular biochemical networks. Dynamics of metabolic networks; the stoichiometric matrix. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cellular differentiation and development. Brain structure: neurons and neural networks. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems. Allometric scaling laws.

Unit - V

Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution.

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

List of experiments

- 1) Demonstration of diffusion, effect of medium, temperature, molecular weight and size on the rate of diffusion.
- 2) Demonstration of osmosis in a living system.
- 3) Demonstration of the relationship between viscosity and density.
- 4) Demonstration of how microscopic particles travel in air through aerosols.
- 5) Graphic visualization and demonstrations of 3D structure of biomolecules using in-silico visualization tools.
- 6) Estimation of serum protein using BSA as the standard. (Optional).

References:

Essential Readings:

- 1) Biological Physics: Energy, Information, Life; Philip Nelson (W. H. Freeman & Co, NY, 2004)
- 2) Cell Biology by the Numbers; Ron Milo and Rob Phillips (Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2016)
- Physical Biology of the Cell (2nd Edition); Rob Phillips et al (Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2013)
- 4) Evolution; M. Ridley (Blackwell Publishers, 2009, 3rd Edition).

(12 Hours)

(12 Hours)

(12 Hours)

(5 Hours)

Additional Readings:

- 1) Physics in Molecular Biology; Kim Sneppen and Giovanni Zocchi (Cambridge University Press, Cambridge UK, 2005)
- 2) Biophysics: Searching for Principles; William Bialek (Princeton University Press, Princeton USA, 2012).

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 2: NUMERICAL ANALYSIS

Course Title Credit		Credit	t distributi course	on of the	Eligibility	Pre-requisite
& Code	& Code		Tutorial	Practical	Criteria	of the course
NUMERICAL ANALYSIS	4	2	0	2	Class 12 th Pass	NIL
DSE-2						

LEARNING OBJECTIVES

The main objective of this course is to introduce the students to the field of numerical analysis enabling them to solve a wide range of physics problems. The skills developed during the course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Analyse a physics problem, establish the mathematical model and determine the appropriate numerical techniques to solve it.
- Derive numerical methods for various mathematical tasks such as solution of non-linear algebraic and transcendental equations, system of linear equations, interpolation, least square fitting, numerical differentiation, numerical integration, eigen value problems and solution of initial value and boundary value problems.
- Analyse and evaluate the accuracy of the numerical methods learned.
- In the laboratory course, the students will learn to implement these numerical methods in Python/C++/Scilab and develop codes to solve various physics problems and analyze the results.

<u>SYLLABUS OF DSE – 2</u>

THEORY COMPONENT

Unit – I

Approximation and Errors in computing: Introduction to numerical computation, Taylor's expansion and mean value theorem. Floating Point Computation, overflow and underflow. Single and double precision arithmetic. Rounding and truncation error, absolute and relative error, error propagation.

Unit – II

Linear Systems: Solution of linear systems by Gaussian elimination method, partial and complete pivoting, LU decomposition, norms and errors, condition numbers, Gauss-Seidel method, diagonally dominant matrix and convergence of iteration methods. Solution of Tridiagonal systems; Eigenvalue Problem: Power method, inverse power method.

Unit – III

Interpolation: Lagrange and Newton's methods (divided difference) for polynomial interpolation, theoretical error of interpolation. Inverse Interpolation. Optimal points for interpolation and Chebyshev Polynomials. Minimax Theorem (Statement only)

Unit – IV

Numerical Integration: Newton Cotes quadrature methods. Derivation of Trapezoidal and Simpson (1/3 and 3/8) rules from Lagrange interpolating polynomial. Error and degree of precision of a quadrature formula. Composite formulae for Trapezoidal and Simpson methods.

Gauss Quadrature methods. Legendre, Lagaurre and Hermite quadrature methods.

Unit – V

(7 Hours)

Initial and Boundary Value Problems: Solution of initial value problems by Euler, modified Euler and Runge Kutta (RK) methods. Local and global errors, comparison of errors in the Euler and RK methods

Finite difference and shooting method for solving two-point linear boundary value problems.

References:

Essential Readings:

- 1) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, India, 2007
- 2) Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India, 2008
- 3) Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, PHI Learning Pvt. Ltd, 2012
- 4) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edition, Wiley India Edition, 2007

Additional Readings:

- 1) Numerical Recipes: The art of scientific computing, William H. Press, Saul A. Teukolsky and William Vetterling, Cambridge University Press; 3rd Edition, 2007
- 2) Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger, New Age Publishers, 2012

(3 Hours)

(5 Hours)

(7 Hours)

(8 Hours)

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

The aim of this lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics. Assessment is to be done not only on the programming but also on the basis of formulating the problem. The list of recommended programs is suggestive only. Students should be encouraged to do more physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods. The students should be encouraged to develop and present an independent project. At least 10 programs must be attempted (taking at least two from each unit). The implementation can be either in Python/ C++/Scilab.

Unit 1 - Linear Systems

- a) Solve a system of linear equations using Gauss Elimination method with pivoting (application to electric networks).
- b) Solve a system of linear equations using Gauss-Seidel method and study the convergence (application to spring mass system).
- c) Determine the inverse of a square matrix using Gauss-Jordan method.
- d) Solve a tri-diagonal system of linear equations.
- e) Study an example of ill-conditioned systematic
- f) Find the LU equivalent of a matrix.
- g) Determine the largest and smallest eigenvalues using Power and inverse power methods. Consider a case where power method fails.

Unit 2 - Interpolation

- a) Given a dataset (x, y) with equidistant x values, prepare the Newton's forward difference, backward difference and divided difference tables.
- b) Given a dataset (x, y) corresponding to a physics problem, use Lagrange and Newton's forms of interpolating polynomials and compare. Determine the value of y at an intermediate value of x not included in the data set. This may be done with equally spaced and non-equally spaced x-values.
- c) Given a tabulated data for an elementary function, approximate it by a polynomial and compare with the true function.
- d) Compare the interpolating polynomial for a given dataset (following a known form e.g. exponential) with the approximation obtained by least square fitting.
- e) Compare the interpolating polynomial approximating a given function in a given range obtained with uniformly spaced points and by Chebyshev points.
- f) Compare the Chebyshev and Maclaurin series expansions of an exponential or sinusoidal function.

Unit 3 - Integration

- a) Use integral definition of error function to compute and plot erf(x) in a given range. Use Trapezoidal, Simpson and Gauss Legendre methods and compare the results for small and large values of x.
- b) Use the definition of erf(x) and numerically take the limit x going to infinity to get the value of Gaussian integral using Simpson method. Compare the result with the value obtained by Gauss Hermite and Gauss Lagaurre methods.
- c) Verify the degree of precision of each quadrature rule.
- d) Use Simpson methods to compute a double integral over a rectangular region.

e) Approximate the value of π by evaluating the integral $\int_0^\infty \frac{1}{x^2+1} dx$ using Simpson, Gauss Hermite and Gauss Lagaurre methods.

Unit 4 - Initial Value Problems (IVP)

- a) Compare the errors in Euler, RK2 and RK4 by solving a first order IVP with known solution. Reduce the step size to a point where the round off errors takes over.
- b) Solve a system of n first order differential equations by Euler and RK methods. Use it to solve an nth order IVP. Solve a damped free and forced harmonic oscillator problem using this.
- c) Solve a physics problem like free fall with air drag or parachte problem using RK method.
- d) Solve a compound spring system (3 springs) by solving a system of differential equations using Euler and RK for a given set of i1nitial conditions.
- e) Obtain the current flowing in a series LCR circuit with constant voltage for a given set of initial conditions.

Unit 5 - Boundary value problems (BVP)

- a) Solve a linear BVP using shooting and finite difference method and compare the results.
- b) Solve a non-linear BVP using the finite difference and shooting method and compare the results.
- c) Determine the temperature distribution along a rod made of two dissimilar materials (of different thermal conductivities) welded together when temperatures at two ends are maintained at given temperatures.
- d) Design a physics problem that can be modelled by a BVP and solve it by any method.

References for laboratory work:

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 3) Computational Physics, Darren Walker, 1st Edition, Scientific International Pvt. Ltd, 2015
- 4) An Introduction to Computational Physics, T. Pang, Cambridge University Press, 2010
- 5) Computational Problems for Physics, R. H. Landau and M. J. Páez, CRC Press, 2018

Category II

Physical Science Courses with Physics discipline as one of the Core Disciplines

(B. Sc. Physical Science with Physics as Major discipline)

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 3: HEAT AND THERMODYNAMICS

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility	Pre- requisite of	
		Lecture	Tutorial	Practical	Criteria	the course	
HEAT AND THERMODYNAMICS	4	2	0	2	Passed 12 th Class	NIL	
PHYSICS DSC – 3							

LEARNING OBJECTIVES

This course will review the basic concepts of thermodynamics, kinetic theory of gases with a brief introduction to statistical mechanics. The primary goal is to make the student understand the applications of fundamental laws of thermodynamics to various systems and processes. This coursework will enable the students to understand the connection between the macroscopic observations of physical systems and microscopic behaviour of atoms and molecule through a brief knowledge of statistical mechanics. The lab course deals with providing the knowledge of the concepts of thermodynamics along with Planck's law and Stefan Boltzmann laws related to black body radiation.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- gain an essence of the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations along with Maxwell's thermodynamic relations.
- Know the fundamentals of the kinetic theory of gases, Maxwell-Boltzmann distribution law, mean free path of molecular collisions, viscosity, thermal conductivity and diffusion.
- Learn about the black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances.
- gain the basic knowledge about quantum statistics: the Bose-Einstein statistics and the Fermi-Dirac statistics.
- In the laboratory course, the students are expected to: Measure of Planck's constant using black body radiation, determine Stefan's Constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of

resistance, study variation of thermo-e.m.f. across two junctions of a thermocouple with temperature etc.

<u>SYLLABUS OF PHYSICS DSC – 3</u>

THEORY COMPONENT

Unit – I - Laws of Thermodynamics

Fundamental basics of Thermodynamic system and variables, Zeroth Law of Thermodynamics and temperature, First law and internal energy, various thermodynamical processes, Applications of First Law: general relation between C_P and C_V, work done during various processes, Compressibility and Expansion Coefficient, reversible and irreversible processes, Second law: Kelvin-Planck and Clausius statements, Carnot engine, Carnot cycle and theorem, basic concept of Entropy, Entropy changes in reversible and irreversible processes, Clausius inequality, Entropy-temperature diagrams.

Unit - II - Thermodynamic Potentials and Maxwell's Relations

Basic concept of Thermodynamic Potentials, Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy, derivation of Maxwell's Thermodynamic Relations and their applications in Clausius Clapeyron Equation, value of $C_P - C_v$, TdS Equations, Energy equations for ideal gases, evaluation of C_P/C_v

Unit – III - Kinetic Theory of Gases and Molecular Collisions (6 Hours)

Maxwell-Boltzmann Law of Distribution of Velocities in an ideal gas and its experimental verification, Mean, Root Mean Square and Most Probable Speeds, Mean Free Path (Zeroth order), Transport Phenomena in ideal gases: Viscosity, Thermal Conductivity and Diffusion (for vertical case)

Unit – IV - Theory of Radiation

Blackbody radiation, Spectral distribution, Derivation of Planck's law, Deduction of Wien's law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law

Unit – V - Statistical Mechanics

Macrostate and Microstate, phase space, Entropy and thermodynamic probability, Maxwell-Boltzmann law, qualitative description of Quantum statistics - Bose Einstein and Fermi Dirac, comparison of three statistics.

References:

Essential Readings:

- 1) Heat and Thermodynamics: M. W. Zemansky and R. Dittman, Tata McGraw-Hill, 1981
- 2) Thermal Physics: S. C. Garg, R. M. Bansal and C. K. Ghosh, 2nd Edition, Tata McGraw-Hill.
- 3) Thermodynamics, Kinetic Theory and Statistical Thermodynamics: Sears and Salinger, Narosa, 1988
- 4) Concepts in Thermal Physics: Blundell and Blundell, 2nd Edition, Oxford University Press, 2009
- 5) Thermal Physics, A. Kumar and S. P. Taneja, R. Chand Publications, 2014
- 6) A Text Book of Heat and Thermodynamics for Degree Students, J. B. Rajam, S. Chand, 1981

(4 Hours)

(5 Hours)

(10 Hours)

(5 Hours)

Additional Readings:

- 1) An Introduction to Thermal Physics: D. Schroeder, Oxford University Press (earlier published by Pearsons), 2021
- 2) Thermal Physics: C. Kittel and H. Kroemer, 2nd Edition, W. H. Freeman, 1980
- 3) Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam and P. S. Hemne, S. Chand and Company

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be done from the following:

- 1) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2) To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3) To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method using steam or electrical heating.
- 4) Measurement of Planck's constant using black body radiation.
- 5) To determine the temperature coefficient of resistance by Platinum Resistance Thermometer using Carey Foster's bridge.
- 6) To study the variation of thermo-e.m.f. across two junctions of a thermocouple with temperature.
- 7) To determine Stefan's Constant.
- 8) To determine the Temperature Coefficient of Resistance using Platinum Resistance Thermometer (PRT) by Callender-Griffith Bridge

References for laboratory work:

- 1) Advanced Practical Physics for students: B. L. Flint and H. T. Worsnop, Asia Publishing House, 1971
- 2) A Text Book of Practical Physics: Indu Prakash and Ramakrishna, 11th Edition, Kitab Mahal
- 3) Advanced level Practical Physics: Nelkon and Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 4) An Advanced Course in Practical Physics: D. Chattopadhyay and P. C. Rakshit, 1990, New Central Book Agency.
- 5) Practical Physics: G. L. Squires, Cambridge University Press, 1985
- 6) B.Sc. Practical Physics: Harnam Singh, P. S. Hemne, revised edition 2011, S. Chand and Co.
- 7) B. Sc. Practical Physics: C. L. Arora, S. Chand and Co.
- 8) B. Sc. Practical Physics: Geeta Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 13a: BIOPHYSICS

Course Title	Credits	Credi	t distributi course	on of the	Eligibility	Pre-requisite
& Code	& Code		Tutorial	Practical	Criteria	of the course
Biophysics						
PHYSICS DSE 13a	4	3	0	1	Passed 12 th Class	NIL

LEARNING OBJECTIVES

This course familiarizes the students with the basic facts and ideas of biology from a quantitative perspective. It shows them how ideas and methods of physics enrich our understanding of biological systems at diverse length and time scales. The course also gives them a flavour of the interface between biology, chemistry, physics and mathematics.

LEARNING OUTCOMES

After completing this course, students will

- Know basic facts about biological systems, including single cells, multicellular organisms and ecosystems from a quantitative perspective.
- Gain familiarity with various biological processes at different length and time scales, including molecular processes, organism level processes and evolution.
- Be able to apply the principles of physics from areas such as mechanics, electricity and magnetism, thermodynamics, statistical mechanics, and dynamical systems to understand certain living processes.
- Get exposure to complexity of life at i) the level of cell, ii) level of multi cellular organism and iii) at macroscopic system ecosystem and biosphere.
- Gain a systems level perspective on organisms and appreciate how networks of interactions of many components give rise to complex behaviour.
- Perform mathematical and computational modelling of certain aspects of living systems.
- Get exposure to models of evolution.
- Be able to perform experiments demonstrating certain physical processes that occur in living systems.

SYLLABUS OF PHYSICS DSE – 13a

THEORY COMPONENT

Unit – I

(4 Hours)

Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self-replication as a distinct property of biological systems. Time scales and spatial scales.

Unit - II

Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation.

Unit - III

Molecular motion in cells: Random walks and applications to biology: Diffusion; models of macromolecules. Mechanical, entropic and chemical forces: Osmosis, cell assembly, molecular motors, bacterial chemotaxis.

Unit - IV

The complexity of life: At the level of a cell: Intracellular biochemical networks. Dynamics of metabolic networks; the stoichiometric matrix. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cellular differentiation and development. Brain structure: neurons and neural networks. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems. Allometric scaling laws.

Unit - V

Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

List of experiments

- 1) Demonstration of diffusion, effect of medium, temperature, molecular weight and size on the rate of diffusion.
- 2) Demonstration of osmosis in a living system.
- 3) Demonstration of the relationship between viscosity and density.
- 4) Demonstration of how microscopic particles travel in air through aerosols.
- 5) Graphic visualization and demonstrations of 3D structure of biomolecules using in-silico visualization tools.
- 6) Estimation of serum protein using BSA as the standard. (Optional).

References:

Essential Readings:

- 1) Biological Physics: Energy, Information, Life; Philip Nelson (W. H. Freeman & Co, NY, 2004)
- 2) Cell Biology by the Numbers; Ron Milo and Rob Phillips (Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2016)
- Physical Biology of the Cell (2nd Edition); Rob Phillips et al (Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2013)
- 4) Evolution; M. Ridley (Blackwell Publishers, 2009, 3rd Edition).

(12 Hours)

(12 Hours)

(12 Hours)

(5 Hours)

Additional Readings:

- 1) Physics in Molecular Biology; Kim Sneppen and Giovanni Zocchi (Cambridge University Press, Cambridge UK, 2005)
- 2) Biophysics: Searching for Principles; William Bialek (Princeton University Press, Princeton USA, 2012).

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 13b: MATHEMATICAL PHYSICS I

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite of the course
	cicults	Lecture	Tutorial	Practical	Criteria	
MATHEMATICAL PHYSICS I	4	3	1	0	Passed 12 th Class	NIL
PHYSICS DSE – 13b						

LEARNING OBJECTIVES

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. The mathematical tools might be building blocks to understand the fundamental computational physics skills and hence enable them to solve a wide range of physics problems. Overall, to help students develop critical skills and knowledge that will prepare them not only for doing fundamental and applied research but also prepare them for a wide variety of careers

LEARNING OUTCOMES

After completing this course, student will be able to,

- Learn the functions more than one variable using the concepts of calculus.
- Solve first order differential equations and apply it to physical problems.
- Represent a periodic function by a sum of harmonics using Fourier series.
- Obtain power series solution of differential equation of 2nd order with variable coefficients using Frobenius mehod.
- Learn beta and gamma functions

SYLLABUS OF PHYSICS DSE 13b

THEORY COMPONENT

Unit – I

(18 Hours)

Calculus of functions of more than one variable: Partial derivatives, chain rule for partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Even and odd functions and their Fourier expansions. Application to Summing of Infinite Series.

Unit – II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre Differential Equations and its solution. Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations.

(12 Hours)

Unit – III

(15 Hours)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions.

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular geometry. Solution of 1D wave equation.

References:

Essential Readings:

- 1) An introduction to ordinary differential equations, E.A. Coddington, PHI learning, 2009
- 2) Differential Equations, George F. Simmons, McGraw Hill, 2007
- 3) Mathematical methods for Scientists and Engineers, D. A. McQuarrie, Viva Book, 2003
- 4) Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5th Edition, Jones and Bartlett Learning, 2012
- 5) Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India, 2008
- 6) Fourier Analysis: With Applications to Boundary Value Problems, Murray Spiegel, McGraw Hill Education, 2017
- 7) Mathematical Methods for Physicists, G. B. Arfken, H. J. Weber, F. E. Harris, 7th Edition, Elsevier, 2013
- 8) Essential Mathematical Methods, K. F. Riley and M. P. Hobson, Cambridge Univ. Press, 2011

Additional Readings:

- 1) Introduction to Electrodynamics, Chapter 1, David J. Griffiths, 4th Edition, Cambridge University Press, 2017
- 2) The Feynman Lectures on Physics, Volume II, Feynman, Leighton and Sands, Narosa Publishing House, 2008
- Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5th Edition, Jones and Bartlett Learning, 2012
- 4) Mathematical Tools for Physics, James Nearing, Dover Publications, 2010
- 5) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, Laxmi Publications Private Limited, 2017

Category II

Physical Science Courses (with Electronics) with Physics and Electronics discipline as Core Disciplines

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 5: HEAT AND THERMODYNAMICS

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility	Pre- requisite of	
		Lecture	Tutorial	Practical	Criteria	the course	
HEAT AND THERMODYNAMICS	4	2	0	2	Passed 12 th Class	NIL	
PHYSICS DSC 5							

LEARNING OBJECTIVES

This course will review the basic concepts of Thermodynamics, Kinetic Theory of gases with a brief introduction to Statistical Mechanics. The primary goal is to make the student understand the applications of fundamental laws of thermodynamics to various systems and processes. This coursework will enable the students to understand the connection between the macroscopic observations of physical systems and microscopic behaviour of atoms and molecule through a brief knowledge of statistical mechanics. The lab course deals with providing the knowledge of the concepts of Thermodynamics along with Planck's Law and Stefan Boltzmann laws related to black body radiation.

LEARNING OUTCOMES

At the end of this course, students will be able to

- gain an essence of the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations along with Maxwell's thermodynamic relations.
- Know the fundamentals of the kinetic theory of gases, Maxwell-Boltzmann distribution law, mean free path of molecular collisions, viscosity, thermal conductivity and diffusion.
- Learn about the black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances.
- gain the basic knowledge about quantum statistics: the Bose-Einstein statistics and the Fermi-Dirac statistics.
- In the laboratory course, the students are expected to: Measure of Planck's constant using black body radiation, determine Stefan's Constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of resistance, study variation of thermo-e.m.f. across two junctions of a thermocouple with temperature etc.

<u>SYLLABUS OF PHYSICS DSC – 5</u>

THEORY COMPONENT

Unit – I - Laws of Thermodynamics

Fundamental basics of Thermodynamic system and variables, Zeroth Law of Thermodynamics and temperature, First law and internal energy, various thermodynamical processes, Applications of First Law: general relation between C_P and C_V, work done during various processes, Compressibility and Expansion Coefficient, reversible and irreversible processes, Second law: Kelvin-Planck and Clausius statements, Carnot engine, Carnot cycle and theorem, basic concept of Entropy, Entropy changes in reversible and irreversible processes, Clausius inequality, Entropy-temperature diagrams.

Unit – II - Thermodynamic Potentials and Maxwell's Relations (5 Hours) Basic concept of Thermodynamic Potentials, Internal Energy, Enthalpy, Helmholtz Free

Energy, Gibb's Free Energy, derivation of Maxwell's Thermodynamic Relations and their applications in Clausius Clapeyron Equation, value of $C_P - C_v$, TdS Equations, Energy equations for ideal gases, evaluation of C_P/C_v

Unit – III - Kinetic Theory of Gases and Molecular Collisions

Maxwell-Boltzmann Law of Distribution of Velocities in an ideal gas and its experimental verification, Mean, Root Mean Square and Most Probable Speeds, Mean Free Path (Zeroth order), Transport Phenomena in ideal gases: Viscosity, Thermal Conductivity and Diffusion (for vertical case)

Unit – IV - Theory of Radiation

Blackbody radiation, Spectral distribution, Derivation of Planck's law, Deduction of Wien's law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law

Unit – V - Statistical Mechanics

Macrostate and Microstate, phase space, Entropy and thermodynamic probability, Maxwell-Boltzmann law, qualitative description of Quantum statistics - Bose Einstein and Fermi Dirac, comparison of three statistics.

References:

Essential Readings:

- 1) Heat and Thermodynamics: M. W. Zemansky and R. Dittman, Tata McGraw-Hill, 1981
- 2) Thermal Physics: S. C. Garg, R. M. Bansal and C. K. Ghosh, 2nd Edition, Tata McGraw-Hill.
- 3) Thermodynamics, Kinetic Theory and Statistical Thermodynamics: Sears and Salinger, Narosa, 1988
- 4) Concepts in Thermal Physics: Blundell and Blundell, 2nd Edition, Oxford University Press, 2009
- 5) Thermal Physics, A. Kumar and S. P. Taneja, R. Chand Publications, 2014
- 6) A Text Book of Heat and Thermodynamics for Degree Students, J. B. Rajam, S. Chand, 1981

Additional Readings:

336

(4 Hours)

(5 Hours)

(10 Hours)

(6 Hours)

- 1) An Introduction to Thermal Physics: D. Schroeder, Oxford University Press (earlier published by Pearsons), 2021
- 2) Thermal Physics: C. Kittel and H. Kroemer, 2nd Edition, W. H. Freeman, 1980
- 3) Heat, Thermodynamics and Statistical Physics, Brij Lal, N. Subrahmanyam and P. S. Hemne, S. Chand and Company

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be done from the following:

- 1) To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2) To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3) To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method using steam or electrical heating.
- 4) Measurement of Planck's constant using black body radiation.
- 5) To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer using Carey Foster's bridge.
- 6) To study the variation of thermo-e.m.f across two junctions of a thermocouple with temperature.
- 7) To determine Stefan's Constant.
- 8) To determine the Temperature Coefficient of Resistance using Platinum Resistance Thermometer (PRT) by Callender-Griffith Bridge

References for laboratory work:

- 1) Advanced Practical Physics for students: B. L. Flint and H. T. Worsnop, Asia Publishing House, 1971
- 2) A Text Book of Practical Physics: Indu Prakash and Ramakrishna, 11th Edition, Kitab Mahal
- Advanced level Practical Physics: Nelkon and Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- 4) An Advanced Course in Practical Physics: D. Chattopadhyay and P. C. Rakshit, New Central Book Agency, 1990
- 5) Practical Physics: G. L. Squires, Cambridge University Press, 1985
- 6) B.Sc. Practical Physics: Harnam Singh, Dr P. S. Hemne, revised edition 2011, S. Chand and Co.
- 7) B. Sc. Practical Physics: C. L. Arora, S. Chand and Co.
- 8) B. Sc. Practical Physics: Geeta Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 6: COMMUNICATION ELECTRONICS

Course Title &	Credits	Credit	distributi course	ion of the	Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
COMMUNICATION ELECTRONICS	4	2	0	2	Passed 12 th Class	NIL
PHYSICS DSC – 6						

LEARNING OBJECTIVES

This paper aims to describe the concepts of electronics in communication. Communication techniques based on analog modulation, analog and digital pulse modulation including PAM, PWM, PPM, ASK, PSK, FSK are described in detail. Communication and Navigation systems such as GPS, satellite and mobile telephony systems are introduced.

LEARNING OUTCOMES

At the end of this course, students will be able to develop following learning outcomes:

- This paper aims to describe the concepts of electronics in communication. In this course, students will receive an introduction to the principle, performance and applications of communication systems.
- Students will learn the various means and modes of communication. They will gain an understanding of fundamentals of electronic communication system and electromagnetic communication spectrum with an idea of frequency allocation for radio communication system in India.
- They will gain an insight on the use of different modulation and demodulation techniques used in analog communication
- Students will be able to analyse different parameters of analog communication techniques.
- They will learn the need of sampling and different sampling techniques where they can sample analog signal
- Students will learn the generation and detection of a signal through pulse and digital modulation techniques and multiplexing.
- They will gain an in-depth understanding of different concepts used in a satellite communication system.
- This paper will essentially connect the text book knowledge with the most popular communication technology in real world.

SYLLABUS OF PHYSICS DSC 6

THEORY COMPONENT

Unit – I

Electronic communication: Introduction to communication – means and modes. Power measurements (units of power). Need for modulation. Block diagram of an electronic communication system. Brief idea of frequency allocation for radio communication system in India (TRAI). Electromagnetic communication spectrum, band designations and usage. Channels and base-band signals.

Analog Modulation: Amplitude Modulation: Frequency spectrum of AM waves, average power, average voltage, modulation index, AM-modulator circuits (collector modulation), AM-demodulator (diode detector), single side band generation and detection.

Angle Modulation: Frequency and phase modulation, frequency spectrum of FM waves, intersystem comparisons (FM and AM), FM generation using VCO, FM detector (slope detector)

Unit – II

Analog Pulse Modulation: Channel capacity, Sampling Theorem and Nyquist Criterion, Basic Principles – Pulse Amplitude Modulation (PAM), Pulse Width Modulation (PWM), Pulse Position Modulation (PPM), modulation and detection technique for PAM only, Multiplexing – Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM).

Unit – III

Digital Pulse Modulation: Need for digital transmission, Pulse Code Modulation (PCM), Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK)

Unit – IV

Satellite Communication: Introduction, Geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Transponders (C - Band), Uplink and downlink, path loss, Satellite visibility, Ground and earth stations. Simplified block diagram of the earth station.

Unit – V

(3 Hours)

Mobile Telephony System: Basic concept of mobile communication, frequency bands used in mobile communication, the concept of cell sectoring and cell splitting, SIM number, IMEI number, GPS navigation system (qualitative idea only).

References:

Essential Readings:

- 1) Communication Electronics, Principles and Applications, L. E. Frenzel, Tata McGraw-Hill.
- 2) Communication Systems: Analog and Digital, R. P. Singh and S. D. Sapre, Tata McGraw-Hill.
- 3) Analog and Digital Communications, H. Hsu, Schaum's Outline Series, Tata McGraw-Hill.
- 4) Electronic Communications Systems: Fundamentals Through Advanced, Wayne Tomasi, Fifth Edition, Pearson.

(10 Hours)

(5 Hours)

(6 Hours)

(6 Hours)

339

5) Communication Systems, S. Haykin, Wiley India

Additional Readings:

- 1) Electronic Communication, L. Temes and M. Schultz, Schaum's Outline Series, Tata McGraw-Hill.
- 2) Electronic Communication Systems, G. Kennedy and B. Davis, Tata McGraw-Hill
- 3) Analog and Digital Communication Systems, M. J. Roden, Prentice Hall of India.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Every student must perform at least 06 experiments.

- 1) To study AM Generation and Detection circuit
- 2) To study FM Generation and Detection circuit
- 3) To study Time Division Multiplexing (TDM)
- 4) To study Pulse Amplitude Modulation (PAM)
- 5) To study Pulse Width Modulation (PWM)
- 6) To study Pulse Position Modulation (PPM)
- 7) To study Amplitude Shift Keying (ASK)
- 8) To study Frequency Shift Keying (FSK)
- 9) To study Phase Shift Keying (PSK)

References (for Laboratory Work):

- 1) Introduction to Analog and Digital Communication by M. A. Bhagyaveni, R. Kalidoss and K. S. Vishvaksenan, River Publishers Series in Communications
- 2) Communication Systems by Michael Moher Simon Haykin, Wiley
- 3) Wireless Communication by Goldsmith Andrea, Cambridge University Press
- 4) Digital Communications: Fundamentals and Applications Bernard Sklar and Pabitra Kumar Ray, Pearson Education India

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 1: BIOPHYSICS

Course Title	Credits	Credi	t distributi course	ion of the	Eligibility	Pre-requisite	
& Code	de Lectur		Tutorial	Practical	Criteria	of the course	
Biophysics					Degged 12th		
PHYSICS DSE 1	4	3	0	1	Class	NIL	

LEARNING OBJECTIVES

This course familiarizes the students with the basic facts and ideas of biology from a quantitative perspective. It shows them how ideas and methods of physics enrich our understanding of biological systems at diverse length and time scales. The course also gives them a flavour of the interface between biology, chemistry, physics and mathematics.

LEARNING OUTCOMES

After completing this course, students will

- Know basic facts about biological systems, including single cells, multicellular organisms and ecosystems from a quantitative perspective.
- Gain familiarity with various biological processes at different length and time scales, including molecular processes, organism level processes and evolution.
- Be able to apply the principles of physics from areas such as mechanics, electricity and magnetism, thermodynamics, statistical mechanics, and dynamical systems to understand certain living processes.
- Get exposure to complexity of life at i) the level of cell, ii) level of multi cellular organism and iii) at macroscopic system ecosystem and biosphere.
- Gain a systems level perspective on organisms and appreciate how networks of interactions of many components give rise to complex behaviour.
- Perform mathematical and computational modelling of certain aspects of living systems.
- Get exposure to models of evolution.
- Be able to perform experiments demonstrating certain physical processes that occur in living systems.

<u>SYLLABUS OF PHYSICS DSE – 1</u>

THEORY COMPONENT

Unit – I

(4 Hours)

Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self-replication as a distinct property of biological systems. Time scales and spatial scales.

Unit - II

Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation.

Unit - III

Molecular motion in cells: Random walks and applications to biology: Diffusion; models of macromolecules. Mechanical, entropic and chemical forces: Osmosis, cell assembly, molecular motors, bacterial chemotaxis.

Unit - IV

(12 Hours) The complexity of life: At the level of a cell: Intracellular biochemical networks. Dynamics of metabolic networks; the stoichiometric matrix. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cellular differentiation and development. Brain structure: neurons and neural networks. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems. Allometric scaling laws.

Unit - V

Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution.

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

List of experiments

- 1) Demonstration of diffusion, effect of medium, temperature, molecular weight and size on the rate of diffusion.
- 2) Demonstration of osmosis in a living system.
- 3) Demonstration of the relationship between viscosity and density.
- 4) Demonstration of how microscopic particles travel in air through aerosols.
- 5) Graphic visualization and demonstrations of 3D structure of biomolecules using in-silico visualization tools.
- 6) Estimation of serum protein using BSA as the standard. (Optional).

References:

Essential Readings:

- 1) Biological Physics: Energy, Information, Life, P. Nelson, W. H. Freeman & Co, NY, 2004
- 2) Cell Biology by the Numbers, R. Milo and R. Phillips, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2016
- 3) Physical Biology of the Cell, R. Phillips et al, 2nd edition, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2013
- 4) Evolution, M. Ridley, Blackwell Publishers, 2009, 3rd edition

(12 Hours)

(12 Hours)

(5 Hours)

Additional Readings:

- 1) Physics in Molecular Biology, K. Sneppen and G. Zocchi, Cambridge University Press, Cambridge UK, 2005
- 2) Biophysics: Searching for Principles, W. Bialek, Princeton University Press, Princeton USA, 2012

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 2: MATHEMATICAL PHYSICS I

Course Title &	Credits	Credit	distributi course	ion of the	Eligibility Criteria	Pre-requisite
Code		Lecture	Tutorial	Practical		of the course
MATHEMATICAL PHYSICS I	4	3	1	0	Passed 12 th Class	NIL
Physics DSE 2						

LEARNING OBJECTIVES

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. The mathematical tools might be building blocks to understand the fundamental computational physics skills and hence enable them to solve a wide range of physics problems. Overall, to help students develop critical skills and knowledge that will prepare them not only for doing fundamental and applied research but also prepare them for a wide variety of careers

LEARNING OUTCOMES

After completing this course, student will be able to,

- Learn the functions more than one variable using the concepts of calculus.
- Solve first order differential equations and apply it to physical problems.
- Represent a periodic function by a sum of harmonics using Fourier series.
- Obtain power series solution of differential equation of 2nd order with variable coefficients using Frobenius mehod.
- Learn beta and gamma functions

SYLLABUS OF PHYSICS DSE 2

THEORY COMPONENT

Unit – I

Calculus of functions of more than one variable: Partial derivatives, chain rule for partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Even and odd functions and their Fourier expansions. Application to Summing of Infinite Series.

Unit – II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre Differential Equations and its solution. Properties of Legendre Polynomials: Rodrigues Formula, Orthogonality. Simple recurrence relations.

(18 Hours)

(12 Hours)

344

Unit – III

(15 Hours)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions.

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular geometry. Solution of 1D wave equation.

References:

Essential Readings:

- 1) An introduction to ordinary differential equations, E. A. Coddington, PHI learning, 2009
- 2) Differential Equations, George F. Simmons, McGraw Hill, 2007
- 3) Mathematical methods for Scientists and Engineers, D. A. McQuarrie, Viva Book, 2003
- Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5th Edition, Jones and Bartlett Learning, 2012
- 5) Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India, 2008
- 6) Fourier Analysis: With Applications to Boundary Value Problems, Murray Spiegel, McGraw Hill Education, 2017
- 7) Mathematical Methods for Physicists, G. B. Arfken, H. J. Weber, F.E. Harris, 7th Edition, Elsevier, 2013
- 8) Essential Mathematical Methods, K. F. Riley and M. P. Hobson, Cambridge University Press, 2011

Additional Readings:

- Introduction to Electrodynamics, Chapter 1, David J. Griffiths, 4th Edition, Cambridge University Press, 2017
- 2) The Feynman Lectures on Physics, Volume II, Feynman, Leighton and Sands, Narosa Publishing House, 2008
- Advanced Engineering Mathematics, D. G. Zill and W. S. Wright, 5th Edition, Jones and Bartlett Learning, 2012
- 4) Mathematical Tools for Physics, James Nearing, Dover Publications, 2010
- 5) Mathematical Physics, A. K. Ghatak, I. C. Goyal and S. J. Chua, Laxmi Publications Private Limited, 2017

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

Course Title &	Credite	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-
Code	Creuits	Lecture	Tutorial	Practical	Criteria	requisites
INTRODUCTION TO ELECTRONICS	4	2	0	2	Passed 12 th Class	NIL
GE-4						

GENERIC ELECTIVE (GE – 4): INTRODUCTION TO ELECTRONICS

LEARNING OBJECTIVES

This paper aims to introduce fundamentals of electronics to students not majoring in physics. Basics of Analog and Digital Electronics are envisioned to be introduced with emphasis on applications of diodes, transistor (BJT), operational amplifier, 555 timer, number systems, basic gates and digital circuits.

LEARNING OUTCOMES

At the end of this course, students will be able to imbibe the following learning outcomes:

- This paper aims to describe the concepts of basic electronics in real-life. In this course, students will receive an introduction to the principle, performance and applications of basic electronic components.
- The students will gain an insight on the existence of analog and digital signals and their necessity. Specifically they would know the difference between active and passive electronic components including filters.
- Students will learn about diodes and its uses in rectification (analog) and switching properties thereof (digital). They will gain an insight into working principle of Photodiodes, Solar Cells, LED and Zener Diode as Voltage Regulator.
- They will gain an understanding of construction and working principle of bipolar junction transistors (BJTs). Specifically, they would understand the fundamentals of amplification.
- Students will be able to seamlessly understand and work on different numbers systems including binary, octal, hexadecimal besides decimal.
- They will learn about the existence of digital gates besides their need in electronic decision making thus laying the foundation for basic artificial intelligence.
- Students will learn the fundamentals of operation amplifier and their regular application including those used to sum, subtract and compare two or more signals.
- They will gain an in-depth understanding of working of Cathode Ray Oscilloscope which effectively acts as an electronic stethoscope for analysis of electronic signal in any laboratory.
- This paper will essentially connect the text book knowledge with the most common electronic components available that influence design of technology in a real world.
- The project component included in the practical section is envisaged to impart much

needed hands-on skill sets to the student. Therein he/she gets an experience in correctly choosing components required to build an electronic circuit, identifying the procurement source (online/offline) besides gaining valuable experience in trouble-shooting

SYLLABUS OF GE - 4

THEORY COMPONENT

Unit – I

Analog and digital signals, Active and passive electronic components, RC integrator and differentiator (use as low pass and high pass filter): Qualitative analysis and frequency response.

Unit – II

I-V characteristics of a diode and it's applications as rectifier (Half and full wave rectifier configurations), Clipper and Clamper circuits (Qualitative Analysis only). Principle and working of Photodiodes, Solar Cells, LED and Zener Diode as Voltage Regulator.

Unit – III

Input and output characteristics of a bipolar junction transistor (BJT) in CB and CE configurations, identifying active, cut-off and saturation regions. Transistor parameters alpha and beta, and relation between them. Application of BJT as a switch and an amplifier in CE configuration (Graphical Analysis)

Unit – IV

Review of basic and Universal Logic Gates, Binary to decimal and Decimal to binary conversion, binary addition and subtraction using 2's complement, Half and Full Adder, Half and Full Subtractor using NAND Gates.

Unit – V

Operational Amplifier (Black Box Approach): Pinout diagram of IC 741; Characteristics of Op-amp (Voltage Gain, offset voltage, slew rate, CMRR, Bandwidth, Input Impedance and Output Impedance). Open loop configuration and its application as a comparator and zero crossing detector. Closed Loop Configuration and its Applications as Inverting and Noninverting Amplifier (Voltage gain using concept of virtual ground), Summing Amplifier and Subtractor

Unit – VI

Block diagram of CRO, Voltage and frequency measurement. Pin-out diagram of IC 555 and its application as Astable Multivibrator

References:

Essential Readings:

- 1) Electronic Devices, Thomas L Floyd; Pearsons Education
- 2) Op Amps and Linear Integrated Circuits, Ramakant A Gaekwad, Pearson Education
- 3) Microelectronic circuits, A. S. Sedra, K. C. Smith, A. N. Chandorkar, Oxford University Press
- 4) Electronic Principles, A. Malvino, D. J. Bates, 7th Edition, Tata Mc-Graw Hill Education, 2018

(6 Hours)

(4 Hours)

(6 Hours)

(4 Hours)

(6 Hours)

(4 Hours)
- 5) Electronic Devices and circuit theory, R. L. Boylestad and L. D. Nashelsky, Pearson Learning
- 6) Digital Principles and Applications, Donald P Leach, Albert Paul Malvino and Goutam Saha, Pearson Education, Tata Mc-Graw Hill.

Additional Readings:

- 1) Electronic Fundamental and Applications, John D Ryder; PHI Learning
- 2) Electronic Devices and Circuits, J. Millman and C. C. Halkias, Tata Mc-Graw Hill.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Every student must perform either "04 Experiments and 01 Project" or "At least six experiments"

- 1) Voltage and frequency measurement using CRO
- 2) Study of RC circuits as an Integrator and Differentiator
- 3) IV characteristics for pn junction diode and Zener diode
- 4) Study of Zener diode as voltage regulator circuit
- 5) Study of transistor characteristics in CE configuration
- 6) Half Adder and Full Adder using NAND gates
- 7) Half Subtractor and Full Subtractor using NAND gates
- 8) Design Astable Multivibrator using IC 555
- 9) Study the Frequency Response of Op Amp in Inverting and Non Inverting configurations.
- 10) Study of zero crossing detector using Op amp IC 741
- 11) Addition of two dc voltages using OP Amp in inverting and non-inverting configurations.

References (for Laboratory Work):

- 1) An Analog Electronics Companion: Basic Circuit Design for Engineers and Scientists by Scott Hamilton, Cambridge University Press
- 2) Practical Electronics by Ralph Morrison, Wiley
- Practical Electronic Design for Experimenters (ELECTRONICS) by Louis E. Frenzel, McGraw Hill Education
- 4) Practical Electronics for Inventors by Paul Scherz and Simon Monk, McGraw Hill
- 5) Analog Electronics with Op-amps: A Source Book of Practical Circuits (Electronics Texts for Engineers and Scientists) – by Anthony Peyton and Vincent Walsh, Cambridge University Press

GENERIC ELECTIVE (GE – 5): SOLID STATE PHYSICS

Course Title &	Cradita	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-requisite	
Code		Lecture	Tutorial	Practical	Criteria	of the course	
SOLID STATE PHYSICS	4	3	1	0	Passed 12 th Class	NIL	
GE-5							

LEARNING OBJECTIVES

This course introduces the basic concepts and principles required to understand the various properties exhibited by condensed matter, especially solids. It enables the students to appreciate how the interesting and wonderful properties exhibited by matter depend upon its atomic and molecular constituents. It also communicates the importance of solid state physics in modern society. Emphasis should be given on the applications and uses of solids.

LEARNING OUTCOMES

On successful completion of the module students should be able to,

- Elucidate the concept of lattice, basis and symmetry in crystals. Learn to appreciate structure and symmetry of solids.
- Understand the elementary lattice dynamics and its influence on the properties of materials.
- Describe the main features of the physics of electrons in solids: origin of energy bands.
- Introduction to dia-, para-, ferri and ferro-magnetic properties of solids and their applications.
- Introduction to dielectric properties exhibited by solids and the concept of polarizability.
- Introduction to superconductivity.

SYLLABUS OF GE - 5

THEORY COMPONENT

UNIT – I

(21 Hours)

Review of Atomic Structure and bonding in solids: Classification of matter as solid, liquid and gas: salient features and properties, Qualitative discussion on Rutherford Model and Bohr model of atom, qualitative idea about discrete energy levels, wave-mechanical concept of the atom, forces between atoms, Ionic bonding, covalent bonding, metallic bonding, Hydrogen bonding and Van der Waals bonding, Properties of solids exhibiting different bonding.

Crystal structure: Periodicity in crystals: lattice points and space lattice, translational, rotational and reflection symmetry elements, lattice with a basis and crystal structure, unit cells and lattice parameters, Bravais lattices (in 2D and 3D) and crystal systems SC, BCC and FCC lattices, conventional and primitive unit cell, Wigner Seitz unit cell, amorphous and crystalline materials. Planes, Miller Indices, directions, density of atoms in different planes, inter-planar spacing, concept of Reciprocal Lattice, Brillouin zones (2 D lattice)

Atomic Packing and Imperfections in crystals: Packing of spheres in 2D and 3D, hexagonal close packing, packing fraction of SC, FCC, and BCC. Point defects and line defects and their consequences on the crystal properties

X-rays: Their generation and properties, Bragg's law and Laue Condition, single crystal method and powder diffraction method, simple problems related to X-Ray diffraction in SC, BCC, FCC

UNIT – II

Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustic and optical phonons, qualitative description of the phonon spectrum in solids.

UNIT – III

Electrical properties of metals: Free electron theory of metals (Drude model), its success and drawbacks, concept of relaxation time, collision time and mean free path, electrical conductivity, mobility and Ohm's law, thermal conductivity of metals, Wiedemann-Franz-Lorentz law.

Band Theory: The Kronig-Penney model (Qualitative idea), Band Gap, direct and indirect bandgap, concept of effective mass, Hall Effect (Metal and Semiconductor).

Optical properties of solids: (Qualitative) Absorption process, transmission and reflectance in solids. Discussion on photoconductivity, photoluminescence.

UNIT – IV

Magnetic Properties of solids: Dia-, Para-, Ferri- and Ferro- magnetic Materials, definition in terms of susceptibility. Weiss's Theory of FerromagnetismandFerromagnetic Domains (qualitative treatment only),B-H curve, soft and hard material and their applications(discussion only) as cores in generators, transformers and electromagnets, energy lossin Hysteresis curve.

UNIT - V

Dielectric Properties of solids: Dipole moment, polarization, local electric field in solids. Depolarization field, electric susceptibility, various sources of polarizability, piezo-, pyro- and ferroelectric materials and their applications(discussion only) as transducers, pickups, sensors, actuators, delay lines.

UNIT - VI

Superconductivity: (Qualitative treatment only) Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, applications of superconductors. Discussion on applications in MRI, particle collider, power transmission, magnetic levitation etc.

References:

Essential Readings:

- 1) Solid State Physics, M. A. Wahab, 3rd Edition, Narosa Publications, 2015
- 2) Solid State Physics, S. O. Pillai, New Age International Publishers
- Introduction to Solid State Physics, Charles Kittel, 8th Edition, Wiley India Pvt. Ltd, 2004
 Elements of Solid State Physics, J. P. Srivastava, 2nd Edition, Prentice-Hall of India, 2006
- 5) Solid State Physics, A. J. Dekker, Macmillan Education, 2008

(3 Hours)

(4 Hours)

(3 Hours)

(4 Hours)

(10 Hours)

Additional Readings:

- 1) Introduction to Solids, Leonid V. Azaroff, Tata Mc-Graw Hill, 2004
- 2) Solid State Physics, N. W. Ashcroft and N. D. Mermin, Cengage Learning, 1976
- 3) Elementary Solid State Physics, M. Ali Omar, Pearson, 2006
- 4) Solid State Physics, Rita John, McGraw Hill, 2014
- 5) Superconductivity: A Very short Introduction Stephen J Blundell Audiobook
- 6) Crystallography applied to solid state physics, A. R. Verma and O. N. Srivastava, New Age International Publishers, 2005

GENERIC ELECTIVE (GE – 7): BIOLOGICAL PHYSICS

Course Title &	Cradita	Cre	dit distrib of the cou	oution rse	Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
BIOLOGICAL PHYSICS	4	3	1	0	Passed 12 th Class	NIL
GE-7						

LEARNING OBJECTIVES

This course familiarizes the students with the basic facts and ideas of biology from a quantitative perspective. It shows them how ideas and methods of physics enrich our understanding of biological systems at diverse length and time scales. The course also gives them a flavour of the interface between biology, chemistry, physics and mathematics.

LEARNING OUTCOMES

After completing this course, students will

- Know basic facts about biological systems, including single cells, multicellular organisms and ecosystems from a quantitative perspective.
- Gain familiarity with various biological processes at different length and time scales, including molecular processes, organism level processes and evolution.
- Appreciate how fundamental principles of physics can be applied to gain an understanding of biological systems.
- Get exposure to complexity of life at i) the level of cell, ii) level of multi cellular organism and iii) at macroscopic system ecosystem and biosphere.
- Gain a systems level perspective on organisms and appreciate how networks of interactions of many components give rise to complex behaviour.
- Perform mathematical modelling of certain aspects of living systems.
- Get exposure to models of evolution.

SYLLABUS OF GE 7

THEORY COMPONENT

Unit – I

Overview: The boundary, interior and exterior environment of living cells. Processes: exchange of matter and energy with environment, metabolism, maintenance, reproduction, evolution. Self-replication as a distinct property of biological systems. Time scales and spatial scales.

Unit - II

Molecules of life: Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures and processes. Transport, energy storage, membrane formation, catalysis, replication, transcription, translation, signaling. Typical populations of molecules of various

(4 Hours)

(12 Hours)

352

types present in cells, their rates of production and turnover. Energy required to make a bacterial cell. Simplified mathematical models of transcription and translation.

Unit - III

Molecular motion in cells: Random walks and applications to biology: Diffusion; models of macromolecules. Molecular motors: Transport along microtubules. Flagellar motion: bacterial chemotaxis.

Unit - IV

(12 Hours) The complexity of life: At the level of a cell: Intracellular biochemical networks. Dynamics of metabolic networks; the stoichiometric matrix. The implausibility of life based on a simplified probability estimate, and the origin of life problem. At the level of a multicellular organism: Numbers and types of cells in multicellular organisms. Cellular differentiation and development. Brain structure: neurons and neural networks. At the level of an ecosystem and the biosphere: Foodwebs. Feedback cycles and self-sustaining ecosystems. Allometric scaling laws.

Unit - V

Evolution: The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution.

References:

Essential Readings:

- 1) Biological Physics: Energy, Information, Life, P. Nelson, W H Freeman & Co, NY, 2004
- 2) Cell Biology by the Numbers, R. Milo and R. Phillips, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2016
- 3) Physical Biology of the Cell, R. Phillips et al, 2nd edition, Garland Science, Taylor & Francis Group, NY USA and Abingdon UK, 2013
- 4) Evolution, M. Ridley, Blackwell Publishers, 2009, 3rd edition

Additional Readings:

- 1) Physics in Molecular Biology, K. Sneppen and G. Zocchi, Cambridge University Press, Cambridge UK, 2005
- 2) Biophysics: Searching for Principles, W. Bialek, Princeton University Press, Princeton USA, 2012

(12 Hours)

(5 Hours)

GENERIC ELECTIVE (GE – 8):

NUMERICAL ANALYSIS AND COMPUTATIONAL PHYSICS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite of the	
Code	Creatis	Lecture	Tutorial	Practical	Criteria	course	
NUMERICAL ANALYSIS AND COMPUTATIONAL PHYSICS GE – 8	4	2	0	2	Passed 12 th Class	Differential calculus, integration and ordinary differential calculus at the class 12 level.	

LEARNING OBJECTIVES

The emphasis of course is to equip students with the mathematical tools required in solving problem of interest to physicists. To expose students to fundamental computational physics skills and hence enable them to solve a wide range of physics problems.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Develop numerical methods to understand errors and solution of Algebraic and Transcendental equations.
- Understand interpolation, least square fitting, Numerical differentiation, Numerical integration and solution of ordinary differential equations.

In the laboratory course, the students will learn to,

- apply appropriate numerical method to solve selected physics problems using user defined and inbuilt functions
- solve non-linear equations
- perform least square fitting of the data taken in physics lab by user defined functions
- Interpolate a data by polynomial approximations
- numerically integrate a function and
- solve first order initial value problems numerically

SYLLABUS OF GE - 8

THEORY COMPONENT

Unit – I

Errors and iterative Methods: Truncation and Round-off Errors. Floating Point Computation, Overflow and underflow. Single and Double Precision Arithmetic, Iterative Methods. Review of Taylor's Theorem and Mean value Theorem (No proofs).

Solutions of Algebraic and Transcendental Equations: Bisection method, Secant Method, Newton Raphson method. Comparison and error estimation

(8 Hours)

Unit – II

Interpolation: Concept of Interpolation, Lagrange Form of interpolating polynomial, Newton's Forward and Backward Differences, Newton's Forward and Backward Interpolation Formulas.

Regression: Algorithm for Least square fitting of a straight line, Fitting a Power function, and Exponential Function using conversion to linear relation by transforming the variables.

Unit – III

(7 Hours) Numerical Differentiation: Approximating the derivative of a function given in the form of discrete data, Numerical Computation of First and second order derivative of a function given in closed form (using Taylor's expansion), errors in Numerical Differentiation.

Numerical Integration: Newton Cotes Quadrature methods for evaluation of definite integrals numerically, Trapezoidal Rule, Simpson's 1/3 and 3/8 Rules. Derivation of composite formulae for these methods and discussion of error estimation

Unit – IV

(5 Hours)

Solution of Ordinary Differential Equations: First Order ODE's: solution of Initial Value problems: (1) Euler's Method and (2) Runge Kutta methods

References:

Essential Readings:

- 1) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edition, Wiley India Edition, 2007
- 2) Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, PHI Learning Pvt. Ltd, 2012
- 3) Computational Physics, Darren Walker, 1st Edition, Scientific International Pvt. Ltd, 2015
- 4) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, 2007

Additional Readings:

- 1) An Introduction to Computational Physics, T. Pang, Cambridge University Press, 2010
- 2) Numerical Recipes: The art of scientific computing, William H. Press, Saul A. Teukolsky and William Vetterling, Cambridge University Press, 3rd Edition, 2007
- 3) Computational Problems for Physics, R. H. Landau and M. J. Páez, CRC Press, 2018

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

The aim of this lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- The course will consist of practical sessions and lectures on Python.
- Assessment is to be done not only on the programming but also on the basis of formulating the problem.
- The list of recommended programs is suggestive only. Students should be encouraged to do more physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods.
- At least 6 programs must be attempted (taking at least one from each unit).

(10 Hours)

Unit I

Basic Elements of Python: The Python interpreter, the print statement, comments, Python as simple calculator, objects and expressions, variables (numeric, character and sequence types) and assignments, mathematical operators. Strings, Lists, Tuples and Dictionaries, type conversions, input statement, list methods. List mutability, formatting in the print statement

Control Structures: Conditional operations, if, *if-else*, *if-elif-else*, *while* and *for* Loops, indentation, break and continue, List comprehension. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions, user-defined functions, local and global variables, passing functions, modules, importing modules, math module, making new modules. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers, etc. Generating pseudo random numbers

Recommended List of Programs

- (a) Make a function that takes a number N as input and returns the value of factorial of N. Use this function to print the number of ways a set of m red and n blue balls can be arranged.
- (b) Generate random numbers (integers and floats) in a given range and calculate area and volume of regular shapes with random dimensions.
- (c) Generate data for coordinates of a projectile and plot the trajectory. Determine the range, maximum height and time of flight for a projectile motion.

Unit II

NumPy Fundamentals: Importing *Numpy*, Difference between List and NumPy array, Adding, removing and sorting elements, creating arrays using *ones()*, *zeros()*, *random()*, *arange()*, *linspace()*. Basic array operations (*sum, max, min, mean, variance*), 2-d arrays, matrix operations, reshaping and transposing arrays, savetxt() and loadtxt().

Plotting with Matplotlib: *matplotlib.pyplot* functions, Plotting of functions given in closed form as well as in the form of discrete data and making histograms.

Recommended List of Programs

- (a) Given a function in closed form y=f(x), generate numpy arrays for x and y and plot y as a function of x with appropriate scale and legend.
- (b) Generate data for coordinates of a projectile and plot the trajectory.
- (c) Given the expressions in closed form, plot the displacement-time and velocity-time graph for the un-damped, under damped critically damped and over damped oscillator.

Unit III

Root Finding

- a) Determine the depth up to which a spherical homogeneous object of given radius and density will sink into a fluid of given density.
- b) Solve transcendental equations like $\alpha = \tan(\alpha)$.
- c) To approximate nth root of a number up to a given number of significant digits.

Unit IV

Least Square fitting

Make function for least square fitting, use it for fitting given data (x,y) and estimate the parameters a, b as well as uncertainties in the parameters for the following cases:

a) Linear
$$(y = ax + b)$$

b) Power law $(y = ax^{b})$

c) Exponential $(y = ae^{bx})$

Interpolation:

- (a) Write program to determine the unique polynomial of a degree n that agrees with a given set of (n+1) data points (x_i, y_i) and use this polynomial to find the value of y at a value of x not included in the data.
- (b) Generate a tabulated data containing a given number of values $(x_i, f(x_i))$ of a function f(x) and use it to interpolate at a value of x not used in table.

Unit V

Numerical Differentiation

- a) Given displacement at equidistant time values, calculate velocity and acceleration and plot them.
- b) Compute the left, right and central approximations for derivative of a function given in closed form. Plot both the function and derivative (forward, backward and central derivatives) on the same graph. Plot the error as a function of step size on a log-log graph, study the behaviour of the plot as step size decreases and hence discuss the effect of round off error.

Numerical Integration:

- a) Given acceleration at equidistant time values, calculate position and velocity and plot them.
- b) Use integral definition of ln(x) to compute and plot ln(x) in a given range. Use trapezoidal and Simpson methods and compare the results.
- c) Verify the rate of convergence of the composite Trapezoidal and Simpson methods by approximating the value of a given definite integral.

References

- 1) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 2) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 3) Computational Physics, Darren Walker, 1st Edition, Scientific International Pvt. Ltd, 2015
- 4) Introduction to Numerical Analysis, S. S. Sastry, 5th Edition, PHI Learning Pvt. Ltd, 2012
- 5) Elementary Numerical Analysis, K. E. Atkinson, 3rd Edition, Wiley India Edition, 2007
- 6) Applied numerical analysis, Cutis F. Gerald and P. O. Wheatley, Pearson Education, 2007

GENERIC ELECTIVE (GE – 9): APPLIED DYNAMICS

Course Title &	Credits	Cre	edit distrik of the cou	oution rse	Eligibility	Pre-requisite	
Code	Creats	Lecture		Practical	Criteria	of the course	
APPLIED DYNAMICS	4	3	1	0	Passed 12 th Class	NIL	
GE – 9							

LEARNING OBJECTIVES

This course introduces the main topics of low-dimensional nonlinear systems, with applications to a wide variety of disciplines, including physics, engineering, mathematics, chemistry, and biology. This course begins with the first order dynamical system and the idea of phase space, flows and trajectories and ends with the elementary fluid dynamics. The nature of the subject demands that the tutorials should include only computational problems.

LEARNING OUTCOMES

Upon successful course completion, a student will be able to:

- Demonstrate understanding of the concepts that underlay the study of dynamical systems.
- Learn various forms of dynamics and different routes to chaos.
- Understand basic Physics of fluids and its dynamics

SYLLABUS OF GE 9

THEORY COMPONENT

Unit – I

Introduction to Dynamical systems: Definition of a continuous first order dynamical system. The idea of phase space, flows and trajectories. Concept of stability and un-stability. Simple mechanical systems as first order dynamical systems: simple and damped harmonic oscillator. Fixed points, attractors, stability of fixed points, basin of attraction, notion of qualitative analysis of dynamical systems. Examples of dynamical systems - Population models e.g. exponential growth and decay, logistic growth, predator-prey dynamics.

Unit – II

Introduction to Chaos: Bifurcations: Saddle-Node bifurcation, Transcritical bifurcation, Pitchfork bifurcation and Hopf bifurcation. Chaos in nonlinear equations: Logistic map and Lorenz equations. Sensitivity to initial states. Parameter dependence: steady, periodic and chaotic states. Cobweb iteration. Simple examples from physics, chemistry, engineering and lifesciences.

Unit – III

Elementary Fluid Dynamics: Basic physics of fluids: The continuum hypothesis-concept of

(22 Hours)

(16 Hours)

(7 Hours)

358

fluid element or fluid parcel; Definition of a fluid- shear stress; Fluid properties- viscosity, thermal conductivity, mass diffusivity and equation of state.

References:

Essential Readings:

- 1) Nonlinear Dynamics and Chaos, S. H. Strogatz, Westview Press, 2nd Edition, 2014
- 2) Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer New York, 1995
- 3) Nonlinear Dynamics: Integrability, Chaos and Patterns, M. Lakshmanan and S. Rajasekar, Springer, 2003
- 4) An Introduction to Fluid Dynamics, G. K. Batchelor, Cambridge University Press, 2002
- 5) Fluid Mechanics, 2nd Edition, L. D. Landau and E. M. Lifshitz, Pergamon Press, Oxford, 1987

nlerelight

REGISTRAR

Appendix-50 Resolution No. 14-1 (14-1-6)

INDEX DEPARTMENT OF PHYSICS AND ASTROPHYSICS Semester-IV

S. No.	Contents	Page No.
	B. Sc. (Hons.) Physics – Discipline Specific Core (DSC)	
1	 Modern Physics Solid State Physics Analog Electronics 	
	B. Sc. (Hons.) Physics – Pool of Discipline Specific Electives (DSEs)	
2	 Advanced Mathematical Physics I Physics of Devices Physics of Earth 	
	B. Sc. Physical Science with Physics as one of the Core	
3	DSC 1. Waves and Optics	3-66
	DSEs	
	1. Introduction to Numerical Methods	
	2. Analog Electronics	
	3. Physics of Earth B. Sc. Physical Science with Physics & Electronics as one of the	
	Core Disciplines	
4	DSC 1. Waves and Optics 2. Microprocessor and Microcontroller	
	DSEs	
	1. Introduction to Numerical Methods	
	2. Physics of Earth	
	Common Pool of Generic Electives (GEs)	
	1. Quantum Mechanics 2. Introduction to Embedded System Design	
5	3. Nano Physics	
	4. Physics of Detectors	
	5. Nuclear and Particle Physics	
	6. Atomic and Molecular Physics	

INDEX DEPARTMENT OF PHYSICS AND ASTROPHYSICS Semester-V

S. No.	Contents	Page No.
	B. Sc. (Hons.) Physics – Discipline Specific Core (DSC)	
1	1. Electromagnetic Theory	
	2. Quantum Mechanics – I	
	3. Digital Electronics	
	B. Sc. (Hons.) Physics – Pool of Discipline Specific Electives (DSEs)	
2	1. Astronomy and Astrophysics	
	2. Physics of Materials	
	3. Communication System	67-111
	B. Sc. Physical Science with Physics as one of the Core	07 111
	Dag	
	DSC	
	1. Elements of Modern Physics	
3		
	DSEs	
	1. Foundation of Astrophysics	
	2. Digital Electronics	
	3. Radiation and its Applications	
	B. Sc. Physical Science with Physics & Electronics as one of the	
	Core Disciplines	
	Dec	
	DSC	
4	1. Elements of Modern Physics	
	DSF	
	1 Semiconductor Devices Fabrication	
	2 Electronics Instrumentation	
	2. Digital Signal Processing	
	 Semiconductor Devices Fabrication Electronics Instrumentation Digital Signal Processing 	

B. SC. (HONOURS) PHYSICS

DISCIPLINE SPECIFIC CORE COURSE – DSC - 10: MODERN PHYSICS

Course Title &	Credits	Credit	t distributi course	ion of the	Eligibility	Pre-requisite of	
Code		Lecture	Tutorial	Practical	Criteria	the course	
Modern Physics	4		0	1	Appeared in	DSC Light and Matter of this	
DSC - 10	4	3	U	I	Semester 3	course or its equivalent	

LEARNING OBJECTIVES

This course introduces modern development in Physics. Starting from Planck's law, it develops the idea of probability interpretation and then discusses the formulation of Schrodinger equation and its applications to step potential and rectangular potential problems. This paper aims to provide knowledge about atomic physics, hydrogen atoms and X-rays. This paper covers the in depth knowledge of lasers, its principle and working. It also introduces concepts of nuclear physics and accelerators.

LEARNING OUTCOMES

After getting exposure to this course, the following topics would be learnt.

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics. Heisenberg's Uncertainty principle and its applications, photoelectric effect and Compton scattering.
- The Schrodinger equation in 1-dimension, wave function, probability and probability current densities, normalization, conditions for physical acceptability of wave functions, position and momentum operators and their expectation values, Commutator of position and momentum operators.
- Time independent Schrodinger equation, derivation by separation of variables, wave packets, particle in a box problem, energy levels. Reflection and transmission across a step and rectangular potential barrier.
- Modification in Bohr's quantum model: Sommerfeld theory of elliptical orbits
- Hydrogen atom energy levels and spectra emission and absorption spectra.
- X-rays: their production and spectra: continuous and characteristic X-rays, Moseley Law.
- Lasers and their working principle, spontaneous and stimulated emissions and absorption, Einstein's A and B coefficients, Metastable states, components of a laser and lasing action in He-Ne lasers and free electron laser.
- Basic properties of nuclei, nuclear binding energy, semi-empirical mass formula, nuclear force and meson theory. Radioactivity.
- Types of Accelerators, Van-de Graaff generator linear accelerator, cyclotron.

<u>SYLLABUS OF DSC – 10</u>

THEORY COMPONENT

Unit – I

Origin of Quantum Theory: Black body radiation and failure of classical theory, Planck's quantum hypothesis, Planck's radiation law, quantitative treatment of photo-electric effect and Compton scattering, Heisenberg's uncertainty principle, Gamma ray microscope thought experiment, position - momentum uncertainty, consequences of uncertainty principle.

Unit – II

(9 Hours) The Schrodinger Equation: The Schrodinger equation in one dimension, statistical interpretation of wave function, probability and probability current densities. Normalization, conditions for physical acceptability of wave functions with examples, position and momentum operators and their expectation values. Commutator of position and momentum operators

Unit – III

Time Independent Schrodinger Equation: Demonstration of separation of variable method for time independent Schrodinger equation: Free particle wave function, wave packets, application to energy eigen values and stationary states for particle in a box problem. Reflection and transmission across a step and rectangular potential barrier

Unit - IV

Atomic Physics: Beyond the Bohr's Quantum Model: Sommerfeld theory of elliptical orbits; Hydrogen atom energy levels and spectra, emission and absorption spectra; Correspondence principle; X-rays: Method of production, Continuous and Characteristic X-rays, Moseley's law.

Lasers: Lifetime of excited states, natural and Doppler width of spectral lines, emission (spontaneous and stimulated) and absorption processes, Einstein's A and B coefficients, principle of detailed balancing, metastable states, components of a laser and lasing action, working principle of a 4 level laser, e.g. He-Ne lasers; qualitative idea of X-ray free electron lasers.

Unit - V

Basic Properties of Nuclei: Introduction (notation, a basic idea about nuclear size, mass, angular momentum, spin, parity, isospin), N-Z graph, nuclear binding energy, semi-empirical mass formula, and basic idea about the nuclear force and meson theory.

Radioactivity: Law of radioactivity and secular equilibrium.

Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), linear accelerator, cyclotron (principle, construction, working, advantages and disadvantages), discovery of new elements of the periodic table

References:

Essential Readings:

1) Concepts of Modern Physics, A. Beiser, 2002, McGraw-Hill.

- 2) Modern Physics, R. A. Serway, C. J. Moses and C. A. Moyer, 2012, Thomson Brooks Cole, Cengage.
- 3) Schaum's Outline of Modern Physics, R. Gautreau and W. Savin, 2020, McGraw Hill LLC

(9 Hours)

(9 Hours)

(9 Hours)

(9 Hours)

- 4) Modern Physics for Scientists and Engineers, S. T. Thornton Rex, 4th edition, 2013, Cengage Learning.
- 5) Introduction to Modern Physics, F. K. Richtmyer, E. H. Kennard and J. N. Cooper, 2002, Tata McGraw Hill.
- 6) Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010.
- 7) Learning Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill.
- 8) Modern Physics, R. Murugeshan, S Chand & Co. Ltd.
- 9) Schaum's Outline of Beginning Physics II | Waves, electromagnetism, Optics and Modern Physics, Alvin Halpern, Erich Erlbach, McGraw Hill.
- 10) Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd edition, Tata McGraw-Hill Publishing Co. Ltd.
- 11) Quantum Physics, Berkeley Physics, Vol.4. E. H. Wichman, 1971, Tata McGraw-Hill
- 12) Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 2004, Macmillan Publishers India Limited.
- 13) Introduction to Quantum Mechanics, D. J. Griffith, 2005, Pearson Education.
- 14) Concepts of nuclear physics, B. Cohen, 2003, McGraw-Hill Education.
- 15) Atomic Physics, Ghoshal, 2019, S. Chand Publishing House.
- 16) Atomic Physics, J. B. Rajam & foreword by Louis De Broglie, 2010, (S. Chand & Co.
- 17) Nuclear Physics, S. N. Ghoshal, S. Chand Publishers.
- 18) Physics of Atoms and Molecules, B. H. Bransden and C. J. Jochain, 2nd edition, Pearson
- 19) Atomic and Molecular Physics, Rajkumar, RBSA Publishers.
- 20) Atoms, Molecules and Photons, W. Demtroder, 2nd edition, 2010, Springer.
- 21) Introducing Nuclear Physics, K. S. Krane, 2008, Wiley India.

Additional Readings:

- 1) Basic Atomic & Molecular Spectroscopy, J. M. Hollas (Royal Society of Chemistry)
- 2) Molecular Spectra and Molecular Structure, G. Herzberg.
- 3) Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach (Series in Fundamental and Applied Nuclear Physics), K. Heyde (Institute of Physics Publishing Third Edition.
- 4) Nuclear Physics: Principles and applications, J. Lilley, 2006, Wiley.
- 5) Schaum's Outline of Modern Physics, 1999, McGraw-Hill Education.
- 6) Atomic and molecular Physics, R. Kumar, 2013, Campus Book Int.
- 7) The Fundamentals of Atomic and Molecular Physics (Undergraduate Lecture Notes in Physics), 2013, Springer.
- 8) Six Ideas that Shaped Physics: Particles Behave like Waves, T. A. Moore, 2003, McGraw Hill.
- 9) Thirty years that shook physics: The story of quantum theory, G. Gamow, Garden City, NY: Doubleday, 1966.

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

Mandatory activity:

- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab
- Familiarization with Schuster's focusing; determination of angle of prism.

At least five experiments to be performed from the following list

- 1) Measurement of Planck's constant using black body radiation and photo-detector
- 2) Photo-electric effect: photo current versus intensity and wavelength of light, maximum energy of photo-electrons versus frequency of light
- 3) To determine the work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs of at least 4 different colours.
- 5) To determine the wavelength of the H-alpha emission line of Hydrogen atoms.
- 6) To determine the ionization potential of mercury.
- 7) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 8) To show the tunneling effect in tunnel diodes using I-V characteristics.
- 9) One innovative experiment designed by the teacher relevant to the syllabus.

References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal.
- 3) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th edition, reprinted, 1985, Heinemann Educational Publishers.
- 4) A Laboratory Manual of Physics for Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publisher.
- 5) B.Sc. Practical Physics, H. Singh, S. Chand & Co Ltd.
- 6) B.Sc. Practical Physics, G. Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC CORE COURSE – DSC - 11: SOLID STATE PHYSICS

Course Title	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of the
& Code		Lecture	Tutorial	Practical	Criteria	course
Solid State Physics	4	3	0	1	Appeared in Semester 3	Basic understanding of thermal physics, electricity and
DSC - 11						magnetism

LEARNING OBJECTIVES

This course introduces the basic concepts and principles required to understand the various properties exhibited by condensed matter, especially solids. It enables the students to appreciate how the interesting and wonderful properties exhibited by matter depend upon the arrangement of its atomic and molecular constituents. The gained knowledge helps to solve problems in solid state physics using relevant mathematical tools. It also communicates the importance of solid state physics in modern society.

LEARNING OUTCOMES

On successful completion of the module students should be able to,

- Elucidate the concept of lattice, crystals and symmetry operations
- Understand elementary lattice dynamics and its influence on the properties of materials
- Describe the origin of energy bands, and their influence on electronic behaviour
- Explain the origin of dia-, para-, and ferro-magnetic properties of solids
- Explain the origin of the dielectric properties exhibited by solids and the concept of polarizability
- Understand the basics of superconductivity
- In the laboratory students will carry out experiments based on the theory that they have learned to measure the magnetic susceptibility, dielectric constant, trace hysteresis loop. They will also employ to four probe methods to measure electrical conductivity and the hall set up to determine the hall coefficient of a semiconductor

SYLLABUS OF DSC - 11

THEORY COMPONENT

Unit – I - Crystal Structure

Classification of solids as amorphous and crystalline materials, basic understanding of bonding in crystals, closed packed structure and packing fractions, lattice translation vectors, lattice with a basis, types of lattices, unit cell, symmetry elements, crystal planes and Miller indices, reciprocal lattice and Ewald's construction (geometrical), Brillouin Zones, Diffraction of X-rays: single crystal and powder method. Bragg's Law

Unit – II - Elementary band theory

Brief discussion on free electron model, success and failure of free electron model, Kronig-

(10 Hours)

(6 Hours)

Penney model, band gap, direct and indirect band gap, effective mass, concept of mobility, Hall effect (Semiconductor).

Unit – III - Elementary Lattice Dynamics

Lattice Vibrations and Phonons: Linear monoatomic and diatomic chains, acoustic and optical phonons, Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T^3 law

Unit – IV - Magnetic Properties of Matter

Dia-, Para-, Ferri- and Ferromagnetic Materials, Classical Langevin Theory of dia- and paramagnetism, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains, Curie's law, B-H Curve, hysteresis and energy loss, soft and hard material

Unit – V - Dielectric Properties of Materials

Polarization, local electric field in solids, depolarization field, electric susceptibility, polarizability, Clausius Mossotti equation, classical theory of electronic polarizability, AC electronic polarizability, normal and anomalous dispersion, complex dielectric constant, basic idea of ferroelectricity and PE Hysteresis loop.

Unit – VI – Superconductivity

Experimental results, critical temperature, critical magnetic field, Meissner effect, Type I and type II superconductors

References:

Essential Readings:

- 1) Introduction to Solid State Physics, Charles Kittel, 8th edition, 2004, Wiley India Pvt. Ltd.
- 2) Elements of Solid State Physics, J. P. Srivastava, 2nd edition, 2006, Prentice-Hall of India.
- 3) Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill.
- 4) Solid State Physics, N. W. Ashcroft and N. D. Mermin, 1976, Cengage Learning.
- 5) Solid-state Physics, H. Ibach and H. Luth, 2009, Springer

Additional Readings:

- 1) Elementary Solid State Physics, M. Ali Omar, 2006, Pearson
- 2) Solid State Physics, R. John, 2014, McGraw Hill
- 3) Solid State Physics, M. A. Wahab, 2011, Narosa Publications

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

- Sessions on the construction and use of specific measurement instruments and experimental apparatus used in the solid state physics laboratory, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the laboratory.

At least four experiments to be performed from the following list

(10 Hours)

(9 Hours)

(3 Hours)

(7 Hours)

- 1) Measurement of susceptibility of paramagnetic solution (Quinck's tube method).
- 2) To measure the magnetic susceptibility of solids.
- 3) To study the dielectric constant of a material/s (solid/liquid) as a function of temperature and frequency.
- 4) To determine the complex dielectric constant and plasma frequency of a metal using Surface Plasmon Resonance (SPR) technique.
- 5) To determine the refractive index of a dielectric material using SPR technique.
- 6) To study the PE Hysteresis loop of a ferroelectric crystal.
- 7) To draw the BH curve of iron (Fe) using solenoid and determine the energy loss from hysteresis loop.
- 8) To measure the resistivity of a semiconductor (Ge) with temperature (up to 150°C) by four-probe method and determine its band gap.
- 9) To determine the Hall coefficient of a semiconductor sample.
- 10) Analysis of X-ray diffraction data in terms of unit cell parameters and estimation of particle size.
- 11) To study magnetoresistance in a semiconductor with magnetic field

References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal
- 3) Elements of Solid State Physics, J. P. Srivastava, 2nd edition, 2006, Prentice-Hall of India
- 4) Practical Physics, G. L. Squires, 4th edition, 2015, Cambridge University Press.
- 5) Practical Physics, C. L. Arora, 19th edition, 2015, S. Chand

DISCIPLINE SPECIFIC CORE COURSE – DSC - 12: ANALOG ELECTRONICS

Course Title &	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of	
Code		Lecture	Tutorial	Practical	Criteria	the course	
Analog Electronics	4	2	0	2	Appeared in Semester 3		
DSC - 12							

LEARNING OBJECTIVES

This course introduces the concept of semiconductor devices and their analog applications. It also emphasizes on understanding of amplifiers, oscillators, operational amplifier and their applications.

LEARNING OUTCOMES

At the end of this course, the following concepts will be learnt.

- To learn about diodes and its uses in rectification
- To gain an insight into working principle of photodiodes, solar cells, LED and zener diode as voltage regulator
- To gain an understanding of construction and working principle of bipolar junction transistors (BJTs), characteristics of different configurations, biasing and analysis of transistor amplifier
- To be able to design and understand use of different types of oscillators
- To learn the fundamentals of operation amplifiers and understand their operations to compare, add, or subtract two or more signals and to differentiate or integrate signals etc.

In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, and oscillators. Also different applications using Op-Amp will be designed.

SYLLABUS OF DSC - 12

THEORY COMPONENT

Unit – I - Two-terminal devices and their applications

IV characteristics of a diode and its application as rectifier (half-wave and full wave rectifier), IV characteristics of a zener diode and its use as voltage regulator, principle, structure and characteristics of (1) LED, (2) Photodiode and (3) Solar Cell

Unit – II - Bipolar junction transistors

n-p-n and p-n-p transistors, IV characteristics of CB and CE configurations, active, cut-off and saturation regions, current gains α and β , relations between α and β , physical mechanism of current flow

Unit – III – Amplifiers and sinusoidal oscillators

Load line analysis of transistor, DC load line and Q-point, fixed bias and voltage divider bias,

(4 Hours)

(5 Hours)

(11 Hours)

transistor as 2-port network, h-parameter equivalent circuit of a transistor, analysis of a single-stage CE amplifier using hybrid model (input and output impedance, current and voltage gain)

Sinusoidal Oscillators: General idea of positive and negative feedback, Barkhausen's criterion for self-sustained oscillations, RC phase shift oscillator, determination of frequency, Hartley and Colpitts oscillators

Unit – IV - Operational Amplifiers (Black Box approach)

(10 Hours)

Characteristics of an ideal and practical Op-Amp (IC 741), open-loop and closed-loop gain, frequency response, CMRR, slew rate and concept of virtual ground

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Comparator and Zero crossing detector (7) Wein bridge oscillator

References:

Essential Readings:

- 1) Integrated Electronics, J. Millman and C. C. Halkias, 1991, Tata Mc-Graw Hill
- 2) Electronics: Fundamentals and Applications, J. D. Ryder, 2004, Prentice Hall
- 3) Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- 4) Microelectronic circuits, A. S. Sedra, K. C. Smith and A. N. Chandorkar, 6th edition, 2014, Oxford University Press.
- 5) Semiconductor Devices: Physics and Technology, S. M. Sze, 2nd edition, 2002, Wiley India
- 6) Electronic Principles, A. Malvino, D. J. Bates, 7th edition, 2018, Tata Mc-Graw Hill Education.
- 7) Electronic Devices and circuit Theory, R. L. Boylestad and L. D. Nashelsky, 2009, Pearson

Additional Readings:

- Learning Electronic Devices and circuits, S. Salivahanan and N. S. Kumar, 3rd edition, 2012, Tata Mc-Graw Hill
- 2) Microelectronic Circuits, M. H. Rashid, 2nd edition, Cengage Learning
- Microelectronic Devices and Circuits, D. A. Bell, 5th edition, 2015, Oxford University Press
- Basic Electronics: Principles and Applications, C. Saha, A. Halder and D. Ganguli, 1st edition, 2018, Cambridge University Press
- 5) Solid State Electronic Devices, B. G.Streetman and S. K. Banerjee, 6th edition, 2009, PHI

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Session on the construction and use of specific analogue devices and experimental apparatuses used in the lab, including necessary precautions
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

At least six experiments to be performed from the following list

- 1) To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 2) Study of V-I and power curves of solar cells, and find maximum power point and efficiency.
- 3) To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 4) To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 5) To design a Wien bridge oscillator for given frequency using an op-amp.
- 6) To design an inverting amplifier using Op-amp (741, 351) for dc voltage of given gain
- 7) To design inverting amplifier using Op-amp (741, 351) and study its frequency response
- 8) To design non-inverting amplifier using Op-amp (741, 351) and study frequency response
- 9) To add two dc voltages using Op-amp in inverting and non-inverting mode
- 10) To study the zero-crossing detector and comparator
- 11) To investigate the use of an op-amp as an integrator
- 12) To investigate the use of an op-amp as a differentiator.

References for laboratory work:

- 1) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino and M. A. Miller, 1994, Mc- Graw Hill
- 2) Student Manual for The Art of Electronics, T. C. Hayes and P. Horowitz

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 3: ADVANCED MATHEMATICAL PHYSICS I

Course Title & Credits		Credi	t distributi course	ion of the	Eligibility	Pre-requisite of
		Lecture	ture Tutorial Practic		Criteria	the course
Advanced Mathematical Physics I	4	4	0	0	Appeared in Semester 3	DSC courses of Mathematical Physics I and Mathematical
DSE - 3						Physics III

LEARNING OBJECTIVES

The objective of the course is to impart the concept of calculus of variation and generalized mathematical constructs in terms of algebraic structures mainly vector spaces. Both concepts are extremely useful in physics, engineering, machine learning, economics and even life sciences and social sciences. While linear algebra studies linear vector spaces, linear transformations, and the matrices, calculus of variation is an important mathematical tool in optimization. This course is intended to provide a solid foundation in both topics as used by physicists and has direct applications in classical and quantum mechanics.

LEARNING OUTCOMES

After completing this course, students will be able to,

- Apply the techniques of calculus of variation to real world problems.
- Solve Euler-Lagrange equations for simple cases.
- Understand algebraic structures in n-dimension and basic properties of the linear vector spaces.
- Understand the concept of dual spaces and inner product spaces.
- Represent linear transformations as matrices and understand basic properties of matrices.
- Determine the eigenvalues and eigenvectors of matrices and diagonalise the matrices.
- Determine orthogonal basis for a vector space using Gram-Schmidt procedure.

SYLLABUS OF DSE - 3

THEORY COMPONENT

Unit – I

Calculus of Variation: Functionals and extrema, Euler's equation for (i) one independent and one dependent variable, (ii) several dependent variables and (iii) several independent variables; Variable end-point problems; Application to problems (e.g. geodesics, catenary, minimum area of soap film, brachistochrone, Fermat's principle, Laplace equation etc.); Generalised coordinates and concept of Lagrangian; Hamilton's principle, Euler-Lagrange's equations of motion and its applications to physics problems (e.g. simple pendulum, one dimensional harmonic oscillator and other problems).

(18 Hours)

Unit – II

Vector Spaces as Algebraic Structures: Definition and examples of groups, rings, fields and vector spaces; real and complex fields, use of ket notation $|\alpha\rangle$ for vectors; Subspaces, linear combination of vectors, linear dependence and independence of vectors, span of a subset of vectors, bases and dimension of vector space, direct sum of spaces, representation of vectors as column matrix with Rⁿ as example.

Inner Product Spaces: Inner product of vectors ($< \alpha | \beta >$) and norm of a vector, Euclidean spaces and unitary spaces, Cauchy-Schwartz inequality, concept of length and distance, metric spaces. Hilbert Space (definition only); linear functional, dual space, dual basis ($< \alpha$) notation); Orthogonality of vectors, orthonormal basis, Gram-Schmidt procedure to construct an orthonormal basis.

Unit – III

(18 Hours) Linear Transformation: Linear mappings and examples, homomorphism and isomorphism of vector space, rank and nullity of a linear mapping, range space and Kernel (null space) of a linear mapping, non-singular transformations.

Matrices as Representations: Matrix representation of linear transformations, composition of linear transformations and matrix multiplication, linear algebra; Algebra of matrices, determinant and trace of matrix and their properties; Non-singular matrices; Rank of a matrix and invertibility of matrices; direct sum and direct product of matrices.

Change of basis transformation, similar matrices; transpose and adjoint of a linear transformation, self-adjoint operators; symmetric and Hermitian matrices; preservation of norms by orthogonal and unitary transformations.

Unit – IV

(12 Hours)

Eigen-values and Eigenvectors: Eigen-values and eigen vectors of a transformation and corresponding matrix representation; Cayley-Hamilton theorem (statement only), its applications like inverse and powers of a matrix; Eigensystems of Hermitian and unitary matrices; Diagonalization of matrices; Normal matrices; Simultaneous diagonalizability of two matrices.

Use of matrices in solving coupled linear first order ordinary differential equations with constant coefficients; Minimal polynomial, functions of a matrix.

References:

Essential Readings:

- 1) Mathematical Methods for Physicists, G. Arfken, H. Weber and F. E. Harris, 7th edition, 2012, Elsevier
- 2) Applied Mathematics for Engineers and Physicists, L. A. Pipes and L. R. Harvill, 1970, McGraw-Hill Inc
- 3) Calculus of Variations, I. M. Gelfand and S. V. Fomin, 2000, Dover Publications
- 4) Introduction to Matrices and Linear Transformations, D. T. Finkbeiner, 2011, Dover Publications
- 5) Schaum's Outline of Theory and Problems of Linear Algebra, S. Lipschutz and M. Lipson, 2017, McGraw Hill Education
- 6) Linear Algebra, S. H. Friedberg, A. J. Insel, and L. E. Spence, 2022, Pearson Education

Additional Readings:

- 1) Elementary Linear Algebra with Supplemental Applications, H. Anton and C. Rorres, 2016, Wiley Student Edition
- 2) A Physicist's Introduction to Algebraic Structures: Vector Spaces, Groups, Topological

(12 Hours)

Spaces and More, P. B. Pal, 2019, Cambridge University Press

- 3) Matrices and Tensors in Physics: A.W. Joshi, 2017, New Age International Pvt. Ltd.
- 4) An Introduction to Linear Algebra and Tensors, M. A. Akivis, V. V. Goldberg, Richard and Silverman, 2012, Dover Publications
- 5) Linear Algebra and Applications, D. C. Lay, 2002, Pearson Education India
- 6) Vector Spaces and Matrices in Physics, M. C. Jain, 2000, Narosa
- 7) Mathematical Methods for Physics and Engineering, K. F. Riley and M. P. Hobson, 2018, Cambridge University Press

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 4: PHYSICS OF DEVICES

Course Title	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of the course	
& Code		Lecture	Tutorial	Practical	Criteria		
Physics of Devices	4	2	0	2	Appeared in Semester 3	Knowledge of basic electronics concepts.	

LEARNING OBJECTIVES

This paper is based on advanced electronics which covers the devices such as UJT, JFET, MOSFET, CMOS etc. Process of IC fabrication is discussed in detail.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- Develop the basic knowledge of semiconductor device physics and electronic circuits along with the practical technological considerations and applications.
- Understand the operation of devices such as UJT, JFET, MOS, various bias circuits of MOSFET, basics of CMOS and charge coupled devices.
- Learn to analyse MOSFET circuits and develop an understanding of MOSFET I-V characteristics and the allowed frequency limits.
- Learn the IC fabrication technology involving the process of diffusion, implantation, oxidation and etching with an emphasis on photolithography and electron-lithography
- Apply concepts for the regulation of power supply by developing an understanding of various kinds of RC filters classified on the basis of allowed range of frequencies.
- Learn to use semiconductor diode as a clipper and clamper circuit

SYLLABUS OF DSE - 4

THEORY COMPONENT

Unit – I

Semiconductors (P and N type), Energy band diagram, Barrier formation in pn junction diode, Derivation of barrier potential and barrier width, storage and depletion capacitances, current flow mechanism in forward and reverse bias junction, current components in a transistor, tunnel diode, metal-semiconductor contacts, Schottky junction and Ohmic junction

Unit – II

(6 Hours)

(11 Hours)

(7 Hours)

Diode as clipper and clamper circuits, RC Filters: Passive-Low pass and High pass filters, Active (1st order Butterworth)-Low Pass, High Pass, Band Pass, and band reject Filters.

Unit – III

Characteristic and small-signal equivalent circuits of UJT and JFET, introduction to metal

oxide semiconductor (MOS) device/MOSFET, MOSFET - their frequency limits, enhancement and depletion mode MOSFETS, basic idea of CMOS and charge coupled devices, importance of power devices: power diode, SCR. Construction and I-V characteristics of DIAC and TRIAC.

Unit – IV

(4 Hours)

(2 Hours)

(Basic idea) Basic process flow for IC fabrication, diffusion and implantation of dopants, passivation/oxidation technique for Si, contacts and metallization technique, basic idea of thermal evaporation and sputtering techniques, basic idea of photolithography, electron-lithography, SSI, MSI, LSI, VLSI and USI.

Unit – V

Basic idea about sensors (gas/fire) and piezoelectric transducer

References:

Essential Readings:

- 1) Physics of Semiconductor Devices, S. M. Sze and K. K. Ng, 3rd edition 2008, John Wiley and Sons
- 2) Electronic Devices and Circuits, A. Mottershead, 1998, PHI Learning Pvt. Ltd.
- 3) Electronic communication systems, G. Kennedy, 1999, Tata McGraw Hill.
- 4) Integrated Electronics, J. Millman and C. C. Halkias, 1991, Tata Mc-Graw Hill.
- 5) Electronics: Fundamentals and Applications, J. D. Ryder, 2004, Prentice Hall.
- 6) Solid State Electronic Devices, B. G. Streetman and S. K. Banerjee, 7th edition
- 7) Power Electronics, M. D. Singh and K. B. Khanchandani, 2006, Tata Mc-Graw Hill

Additional Readings:

- 1) Op-Amps and Linear Integrated Circuits, R. A. Gayakwad, 4th edition, 2000, PHI Learning Pvt. Ltd
- 2) Introduction to Measurements and Instrumentation, A. K. Ghosh, 4th edition, 2017, PHI Learning
- 3) Semiconductor Physics and Devices, D. A. Neamen, 4th edition, 2011, Tata McGraw Hill

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) To design the active low pass and high pass filters of given specification.
- 2) To design the active filter (wide band pass and band reject) of given specification.
- 3) To study the output and transfer characteristics of a JFET.
- 4) To design a common source JFET amplifier and study its frequency response.
- 5) To study the output characteristics of a MOSFET.
- 6) To study the characteristics of a UJT and design a simple relaxation oscillator.
- 7) To study diode as clipper circuit.
- 8) To study diode as a clamper circuit.
- 9) Pattern the given structure on silicon wafer by wet chemical etching.

Suggested extra experiment:

1) Deposition of metallic thin films using thermal evaporation technique.

2) Preparation of a pn junction and study its IV characteristics.

References for laboratory work:

- 1) Advanced PC based instrumentation; Concepts and Practice, N. Mathivanan, 2007, Prentice-Hall of India
- 2) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino, M. A. Miller, 1994, Mc-Graw Hill
- 3) Introduction to PSPICE using ORCAD for circuits and Electronics, M. H. Rashid, 2003, PHI Learning.

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 5: PHYSICS OF EARTH

Course Title	Credits	Credi	t distributi course	ion of the	Eligibility	Pre-requisite
& Code	creates	Lecture	Tutorial	Practical	Criteria	of the course
Physics of Earth	4	4	0	0	Appeared in Semester 3	
DSE-5						

LEARNING OBJECTIVES

This course familiarizes the students with the origin of earth in the solar system and various processes occurring in atmosphere, oceans and earth's internal structure.

LEARNING OUTCOMES

At the end of this course student will be able to,

- Have an overview of structure of the earth as well as various dynamical processes occurring on it.
- Develop an understanding of evolution of the earth.
- Apply physical principles of elasticity and elastic wave propagation to understand modern global seismology as a probe of the Earth's internal structure.
- Understand the origin of magnetic field, geodynamics of earthquakes and the description of seismic sources; a simple but fundamental theory of thermal convection; the distinctive rheological behaviour of the upper mantle and its top.
- Explore various roles played by water cycle, carbon cycle, nitrogen cycles in maintaining steady state of earth leading to better understanding of the contemporary dilemmas (climate change, bio diversity loss, population growth, etc.) disturbing the Earth.
- Develop the problem solving skills by adding numerical and simulations to clarify the fundamental concepts.

SYLLABUS OF DSE - 5

THEORY COMPONENT

Unit – I

The Earth and the Universe:

- a) General characteristics and origin of the Universe. The Big Bang Theory. Estimation of age of the Universe and Hubble constant. Formation of Galaxies. Types of galaxies, Milky Way galaxy, Nebular hypothesis, Solar system, The Terrestrial and Jovian planets (Sizes, Acceleration due to gravity, Obliquity, Flatness, Eccentricity, Density, Temperature, Pressure, Atmosphere, Moons, Exceptions in trends). Titius-Bode law. Asteroid belt. Asteroids: origin types and examples, Meteorites.
- b) Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age. Earth's orbit and spin, the Moon's orbit and spin.
- c) Energy and particle fluxes incident on the Earth.

(10 Hours)

Unit – II

Structure of Earth:

- a) The Solid Earth: topography (Maps, Techniques, Forms of Topographic data).
- b) Internal structure: Core, mental, magnetic field. Origin of the Magnetic field. Convection in Earth's core and production of its magnetic field. Dynamo Theory, calculation of magnetic fields, Causes of variation of Magnetic Field and Palaeomagnetism.
- c) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. Ocean circulations. Oceanic current system and effect of Coriolis forces.
- d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers, permafrost.

Unit – III

Dynamical Processes:

- a) The Solid Earth: Concept of plate tectonics; types of plate movements, hotspots; sea-floor spreading and continental drift.
- b) Geodynamic elements of Earth: Mid Oceanic Ridges, trenches, transform faults and island arcs. Continents, mountains and rift valleys.
- c) Earthquake and earthquake belts. Types and properties of Seismic waves, Richter scale, geophones.
- d) Volcanoes: types, products and distribution.
- e) Concepts of eustasy, air-sea interaction; wave erosion and beach processes. Tides. Tsunamis.

Unit – IV

The Atmosphere

- a) The Atmosphere: Features of different layers, variation of temperature with altitude; Dry, moist and environmental lapse rate, variation of density and pressure with altitude, Types of clouds and formation.
- b) The Atmosphere: Atmospheric circulation. Causes of Atmospheric circulation, Formation of three cells, Easterlies and Westerlies, and ICTZ, Weather and climatic changes. Earth's heat budget. Cyclones and anti-cyclones, tropical storms, hurricanes and tornadoes.
- c) Climate: Earth's temperature and greenhouse effect. Paleoclimate and recent climate changes. The Indian monsoon system.

Unit – V

Disturbing the Earth – Contemporary dilemmas

- a) Human population growth.
- b) Hydrosphere: Fresh water depletion.
- c) Geosphere: Chemical effluents, nuclear waste.
- d) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of ecosystems. Water cycle, Carbon cycle. The role of cycles in maintaining a steady state.
- e) Air Pollution: Types of air pollutants, Effects on atmosphere and living organisms. Ozone Hole.

References:

Essential Readings:

- 1) Planetary Surface Processes, H. J. Melosh, 2011, Cambridge University Press.
- 2) Holme's Principles of Physical Geology, 1992, Chapman & Hall.
- 3) Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emiliani, 1992, Cambridge University Press.

(15 Hours)

(12 Hours)

(8 Hours)

(15 Hours)

- 4) Physics of the Earth, F. D. Stacey, P. M. Davis, 2008, Cambridge University Press.
- 5) Environmental Physics: Sustainable Energy and Climate Change, E. Boecker and R.V. Grondelle, 3rd edition, 2011, Wiley, UK
- 6) Atmospheric Remote Sensing (Principles and Applications, Editors S. Tiwari and A. K. Singh, Chapter-1 (Composition and thermal structure of the Earth's atmosphere, by S. K. Dhaka and V. Kumar), 1st edition, Elsevier

Additional Readings:

- 1) The Blue Planet: An Introduction to Earth System Science, B. J. Skinner, S. C. Portere, 1994, John Wiley & Sons.
- 2) Consider a Spherical Cow: A course in environmental problem solving, J. Harte, University Science Books.
- 3) Fundamentals of Geophysics, W. Lowrie, 1997, Cambridge University Press.
- 4) The Solid Earth: An Introduction to Global Geophysics, C. M. R. Fowler, 1990, Cambridge University Press.
- 5) Climate Change: A Very Short Introduction, M. Maslin, 3rd edition, 2014, Oxford University Press.
- 6) The Atmosphere: A Very Short Introduction, P. I. Palmer, 2017, Oxford University Press.
- 7) IGNOU Study material: PHE 15 Astronomy and Astrophysics Block 2

Category II

Physical Science Courses with Physics discipline as one of the Core Disciplines

(B. Sc. Physical Science with Physics as Major discipline)

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 4: WAVES AND OPTICS

Course Title & Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical	Criteria	of the course
Waves and Optics		2	0	2	Appeared in	
PHYSICS DSC – 4	4	2	U	2	Semester 3	

LEARNING OBJECTIVES

This is a core course in Physics curriculum that begins with explaining ideas of superposition of harmonic oscillations leading to physics of travelling and standing waves. The course also provides an in depth understanding of wave phenomena of light, namely, interference and diffraction with emphasis on practical applications of the same.

LEARNING OUTCOMES

On successfully completing the requirements of this course, the students will have the skill and knowledge to,

- Understand simple harmonic oscillation and superposition principle.
- Understand superposition of a range of collinear and mutually perpendicular simple harmonic motions and their applications.
- Understand concept of normal modes in stationary waves: their frequencies and configurations.
- Understand interference as superposition of waves from coherent sources derived from same parent source.
- Demonstrate understanding of interference experiments: Young's double slit, Fresnel's biprism, Llyod's mirror, Newton's rings
- Demonstrate basic concepts of diffraction: Superposition of wavelets diffracted from apertures
- Understand Fraunhoffer diffraction from apertures: single slit, double slit, grating
- Demonstrate fundamental understanding of Fresnel diffraction: Half period zones, diffraction of different apertures
- Laboratory course is designed to understand the principles of measurement and skills in experimental designs.

<u>SYLLABUS OF PHYSICS DSC – 4</u>

THEORY COMPONENT

Unit – I

(11 Hours)

Superposition of collinear harmonic oscillations: Simple harmonic motion (SHM); linearity and superposition principle; superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (beats).

Superposition of two perpendicular harmonic oscillations: Graphical and analytical methods.

Lissajous figures with equal and unequal frequencies and their uses Superposition of two harmonic Waves: Standing (stationary) waves in a string; normal modes of stretched strings

Unit – II

Interference: Division of amplitude and division of wavefront; Young's double slit experiment: width and shape of fringes; Fresnel's biprism; Lloyd's mirror; Phase change on reflection: Stokes' treatment; Interference in thin films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger fringes); Fringes of equal thickness (Fizeau Fringes); Newton's rings: Measurement of wavelength and refractive index

Unit – III

Diffraction:

Fraunhofer diffraction: Single slit, double slit, diffraction grating

Fresnel diffraction: Fresnel's assumptions. Fresnel's half-period zones for plane wave. Explanation of rectilinear propagation of light; Fresnel's diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis

References:

Essential Readings:

- 1) Vibrations and Waves, A. P. French, 1st edition, 2003, CRC press.
- 2) The Physics of Waves and Oscillations, N. K. Bajaj, 1998, Tata McGraw Hill.
- 3) Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- 4) Fundamental of Optics, A. Kumar, H. R. Gulati and D. R. Khanna, 2011, R. Chand Publications.
- 5) Optics, A. Ghatak, 6th edition, 2017, McGraw-Hill Education, New Delhi
- 6) The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.

Additional Readings:

- 1) Principles of Optics, M. Born and E. Wolf, 7th edition, 1999, Pergamon Press.
- 2) Optics, E. Hecht, 4th edition, 2014, Pearson Education.
- 3) Fundamentals of Optics, F. A. Jenkins and H. E. White, 1981, McGraw-Hill

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least 7 experiments to be performed from the following list

- 1) To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 -T law.
- 2) To study Lissajous figures.
- 3) Familiarization with Schuster's focusing and determination of angle of prism.
- 4) To determine refractive index of the material of a prism using sodium light.
- 5) To determine the dispersive power and Cauchy's constants of the material of a prism using mercury light.
- 6) To determine wavelength of sodium light using Fresnel biprism.
- 7) To determine wavelength of sodium light using Newton's rings.
- 8) To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped film.

(8 Hours)

(11 Hours)

24
- 9) To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 10) To determine dispersive power and resolving power of a plane diffraction grating.

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal
- 3) Advanced level Physics Practicals, M. Nelson and J. M. Ogborn, 4th edition, reprinted 1985, Heinemann Educational Publishers
- 4) A Laboratory Manual of Physics for undergraduate classes, D. P. Khandelwal, 1985, Vani Pub.
- 5) B.Sc. Practical Physics, G. Sanon, 2019, R. Chand & Co

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 14a: INTRODUCTION TO NUMERICAL METHODS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
Introduction to Numerical Methods	4	2	0	2	Appeared in Semester 3	Elementary calculus
PHYSICS DSE 14a						

LEARNING OBJECTIVES

The main objective of this course is to introduce the students to the field of numerical analysis enabling them to solve a wide range of physics problems. The skills developed during the course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Analyse a physics problem, establish the mathematical model and determine the appropriate numerical techniques to solve it.
- Derive numerical methods for various mathematical tasks such as root finding, interpolation, least squares fitting, numerical differentiation, numerical integration, and solution of initial value problems.
- Analyse and evaluate the accuracy of the numerical methods learned.

In the laboratory course, the students will learn to implement these numerical methods in Python and develop codes to solve various physics problems and interpret the results.

<u>SYLLABUS OF PHYSICS DSE – 14a</u> <u>THEORY COMPONENT</u>

Unit – I

(7 Hours)

Approximation and errors in computing: Introduction to numerical computation, Taylor's expansion and mean value theorem; Floating point computation, overflow and underflow; IEEE single and double precision format; Rounding and truncation error, absolute and relative error, error propagation.

Solutions of algebraic and transcendental equations: Basic idea of iteration method, Bisection method, Secant method, Newton Raphson method; comparison of order of convergence.

Unit – II

(7 hours)

Interpolation: Interpolation and Lagrange polynomial, divided differences, Newton divideddifference form of the interpolating polynomial with equally spaced nodes. Theoretical error in interpolation.

Least Squares Approximation: Least squares linear regression, Least squares regression for exponential and power functions by taking logarithm.

Unit - III

(8 Hours) Numerical Differentiation: Using finite difference to approximate derivatives of first and second order using Taylor series and error in this approximation.

Numerical Integration: Newton Cotes quadrature methods; derivation of Trapezoidal and Simpson (1/3 and 3/8) rules from Lagrange interpolating polynomial; error and degree of precision of a quadrature formula; composite formulae for trapezoidal and Simpson methods; Gauss Legendre quadrature method.

Unit - IV

(8 Hours)

Initial Value Problems: Solution of initial value problems by Euler, modified Euler and Runge Kutta (RK2, RK4) methods; local and global errors, comparison of errors in the Euler and RK methods, system of first order differential equations. Solving higher order initial value problems by converting them into a system of first order equations.

References:

Essential Readings:

- Introduction to Numerical Analysis, S. S. Sastry, 5th edition, 2012, PHI Learning Pvt. Ltd.
 Elementary Numerical Analysis, K. E. Atkinson, 3rd edition, 2007, Wiley India Edition.
- 3) Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger and R. K. Jain, 2012, New Age Publishers
- 4) A Friendly Introduction to Numerical Analysis, B. Bradie, 2007, Pearson India

Additional Readings:

- 1) Numerical Recipes: The art of scientific computing, W. H. Press, S. A. Teukolsky and W. Vetterling, 3rd edition, 2007, Cambridge University Press
- 2) Numerical Methods for Scientists and Engineers, R. W. Hamming, 1987, Dover Publications
- 3) Applied numerical analysis, C. F. Gerald and P. O. Wheatley, 2007, Pearson Education
- 4) Numerical Analysis, R. L. Burden and J. D. Faires, 2011, Brooks/Cole, Cengage Learning
- 5) Numerical Methods, V. N. Vedamurthy and N. Ch. S.N. Iyengar, 2011, Vikas Publishing House

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Assessment is to be done not only on the programming but also on the basis of formulating the problem.
- The list of recommended programs is suggestive only. Students should be encouraged to do more physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods.
- The students should be encouraged to develop and present an independent project.
- At least 12 programs must be attempted (taking two from each unit). The implementation is to be done in Python. Use of scipy inbuilt functions may be encouraged

Unit 1

Basic Elements of Python: The Python interpreter, the print statement, comments, Python as simple calculator, objects and expressions, variables (numeric, character and sequence types) and assignments, mathematical operators. Strings, Lists, Tuples and Dictionaries, type conversions, input statement, list methods. List mutability, formatting in the print statement.

Control Structures: Conditional operations, *if, if-else, if-elif-else, while* and *for* Loops, indentation, break and continue, List comprehension. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions, user-defined functions, local and global variables, passing functions, modules, importing modules, math module, making new modules. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers, etc. Use of inbuilt functions to generate pseudo random numbers.

Recommended List of Programs

- a) Make a function that takes a number N as input and returns the value of factorial of N. Use this function to print the number of ways a set of m red and n blue balls can be arranged.
- b) Generate random numbers (integers and floats) in a given range and calculate area and volume of regular shapes with random dimensions.
- c) Write functions to convert Cartesian coordinates of a given point to cylindrical and spherical polar coordinates or vice versa.
- d) Solve quadratic equations for the three cases of distinct real, double real and complex conjugate roots.

Unit 2

NumPy Fundamentals: Importing *Numpy*, Difference between List and NumPy array, Adding, removing and sorting elements, creating arrays using *ones()*, *zeros()*, *random()*, *arange()*, *linspace()*. Basic array operations (*sum, max, min, mean, variance*), 2-d arrays, matrix operations, reshaping and transposing arrays, savetxt() and loadtxt().

Plotting with Matplotlib: *matplotlib.pyplot* functions, plotting of functions given in closed form as well as in the form of discrete data and making histograms

Recommended List of Programs

- (a) To generate data for coordinates of a projectile and plot the trajectory. Determine the range, maximum height and time of flight for a projectile motion.
- (b) To plot the displacement-time and velocity-time graph for the undamped, under damped critically damped and over damped oscillator using *matplotlib* (using given formulae).
- (c) To generate array of N random numbers drawn from a given distribution (uniform, binomial, poisson and gaussian) and draw histogram using *matplotlib* for increasing N to verify the distribution.
- (d) To approximate the elementary functions (e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\ln(1+x)$, etc.) by a finite number of terms of Taylor's series and discuss the truncation error. To plot the function as well the nth partial sum of its series for various values of *n* on the same graph and visualise the convergence of series.

Unit 3

Root Finding: Implement the algorithms for Bisection, Secant and Newton Raphson methods or their combinations to,

(a) Determine the depth up to which a spherical homogeneous object of given radius and density will sink into a fluid of given density.

- (b) Solve transcendental equations like $\alpha = \tan(\alpha)$.
- (c) Approximate nth root of a number up to a given number of significant digits.

Unit 4

Interpolation and Least Square Fitting:

- a) Given a dataset (x, y) with equidistant x values, prepare the Newton's divided difference table. Generate a tabulated data for an elementary function, approximate it by a polynomial and compare with the true function.
- b) Given a dataset (x, y) corresponding to a physics problem, use Lagrange and Newton's forms of interpolating polynomials and compare. Determine the value of y at an intermediate value of x not included in the data set. This may be done with equally spaced and non-equally spaced x-values.
- c) Make Python function for least square fitting, use it for fitting given data (x, y) and estimate the parameters a, b as well as uncertainties in the parameters for the following cases :
- i. Linear (y = ax + b)
- ii. Power law $(y = ax^b)$ and
- iii. Exponential $(y = ae^{bx})$
- The real data taken in physics lab may be used here.
- d) Compare the interpolating polynomial for a given dataset (following a known form e.g. exponential) with the approximation obtained by least square fitting.

Unit 5

Differentiation and Integration:

- a) To compute the left, right and central approximations for derivative of a function given in closed form. Plot both the function and derivative on the same graph. Plot (using *matplotlib*) the error as a function of step size on a log-log graph, study the behaviour of the plot as step size decreases and hence discuss the effect of round off error.
- b) Use integral definition of error function to compute and plot erf(x) in a given range. Use Trapezoidal, Simpson and Gauss Legendre methods and compare the results for small and large values of x.
- c) Verify the degree of precision of each quadrature rule.
- d) Approximate the value of π by evaluating the integral $\int_0^\infty \frac{1}{x^2+1} dx$ using Simpson and Gauss Legendre method. More integrals may be evaluated.

Unit 6

Initial Value Problems (IVP):

- a) Compare the errors in Euler, RK2 and RK4 by solving a first order IVP with known solution. Reduce the step size to a point where the round off errors takes over.
- b) Radioactive decay: With a given number of initial nuclei and decay constant plot the number of nuclei left as a function of time and determine the half life
- c) Solve a system of two first order differential equations by Euler, RK2 and RK4 methods. Use it to solve an nth order IVP. Solve a damped free and forced harmonic oscillator problem using this.
- d) Solve a physics problem like free fall with air drag or parachute problem using RK method.
- e) Obtain the current flowing in a series LCR circuit with constant voltage for a given set of initial conditions.

- 1) Documentation at the Python home page (<u>https://docs.python.org/3/</u>) and the tutorials there (<u>https://docs.python.org/3/tutorial/</u>).
- 2) Documentation of NumPy and Matplotlib: <u>https://numpy.org/doc/stable/user/</u> and <u>https://matplotlib.org/stable/tutorials/</u>
- 3) Computational Physics, D. Walker, 1st edition, 2015, Scientific International Pvt. Ltd
- 4) An Introduction to Computational Physics, T. Pang, 2010, Cambridge University Press
- 5) Python Programming and Numerical Methods A Guide for Engineers and Scientists, Q. Kong, T. Siauw, A. M. Bayen, 2021, Academic Press

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 14b: ANALOG ELECTRONICS

Course Title & Code	Credits	Credit	distribution of the course		Eligibility	Pre-requisite
		Lecture	Tutorial	Practical	Criteria	of the course
Analog Electronics PHYSICS DSE – 14b	4	2	0	2	Appeared in Semester 3	

LEARNING OBJECTIVES

This course introduces the concept of semiconductor devices and their analog applications. It also emphasizes on understanding of amplifiers, oscillators, operational amplifier and their applications.

LEARNING OUTCOMES

At the end of this course, the following concepts will be learnt.

- To learn about diodes and its uses in rectification
- To gain an insight into working principle of photodiodes, solar cells, LED and zener diode as voltage regulator
- To gain an understanding of construction and working principle of bipolar junction transistors (BJTs), characteristics of different configurations, biasing and analysis of transistor amplifier
- To be able to design and understand use of different types of oscillators
- To learn the fundamentals of operation amplifiers and understand their operations to compare, add, or subtract two or more signals and to differentiate or integrate signals etc.

In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, and oscillators. Also different applications using Op-Amp will be designed.

SYLLABUS OF Physics DSE – 14b

THEORY COMPONENT

Unit - I - Two-terminal devices and their applications

IV characteristics of a diode and its application as rectifier (half-wave and full wave rectifier), IV characteristics of a zener diode and its use as voltage regulator, principle, structure and characteristics of (1) LED, (2) Photodiode and (3) Solar Cell

Unit – II - Bipolar junction transistors

n-p-n and p-n-p transistors, IV characteristics of CB and CE configurations, active, cut-off and saturation regions, current gains α and β , relations between α and β , physical mechanism of current flow

Unit - III - Amplifiers and sinusoidal oscillators

Load line analysis of transistor, DC load line and Q-point, fixed bias and voltage divider bias, transistor as 2-port network, h-parameter equivalent circuit of a transistor, analysis of a

(5 Hours)

(4 Hours)

(11 Hours)

31

single-stage CE amplifier using hybrid model (input and output impedance, current and voltage gain)

Sinusoidal Oscillators: General idea of positive and negative feedback, Barkhausen's criterion for self-sustained oscillations, RC phase shift oscillator, determination of frequency, Hartley and Colpitts oscillators

Unit – IV - Operational Amplifiers (Black Box approach)

(10 Hours)

Characteristics of an ideal and practical Op-Amp (IC 741), open-loop and closed-loop gain, frequency response, CMRR, slew rate and concept of virtual ground

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Comparator and Zero crossing detector (7) Wein bridge oscillator

References:

Essential Readings:

- 1) Integrated Electronics, J. Millman and C. C. Halkias, 1991, Tata Mc-Graw Hill
- 2) Electronics: Fundamentals and Applications, J. D. Ryder, 2004, Prentice Hall
- 3) Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- 4) Microelectronic circuits, A. S. Sedra, K. C. Smith and A. N. Chandorkar, 6th edition, 2014, Oxford University Press.
- 5) Semiconductor Devices: Physics and Technology, S. M. Sze, 2nd edition, 2002, Wiley India
- 6) Electronic Principles, A. Malvino, D. J. Bates, 7th edition, 2018, Tata Mc-Graw Hill Education.
- 7) Electronic Devices and circuit Theory, R. L. Boylestad and L. D. Nashelsky, 2009, Pearson

Additional Readings:

- Learning Electronic Devices and circuits, S. Salivahanan and N. S. Kumar, 3rd edition, 2012, Tata Mc-Graw Hill
- 2) Microelectronic Circuits, M. H. Rashid, 2nd edition, Cengage Learning
- Microelectronic Devices and Circuits, D. A. Bell, 5th edition, 2015, Oxford University Press
- Basic Electronics: Principles and Applications, C. Saha, A. Halder and D. Ganguli, 1st edition, 2018, Cambridge University Press
- 5) Solid State Electronic Devices, B. G.Streetman and S. K. Banerjee, 6th edition, 2009, PHI

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Session on the construction and use of specific analogue devices and experimental apparatuses used in the lab, including necessary precautions
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

At least six experiments to be performed from the following list

1) To study the V-I characteristics of a Zener diode and its use as voltage regulator.

- 2) Study of V-I and power curves of solar cells, and find maximum power point and efficiency.
- 3) To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 4) To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 5) To design a Wien bridge oscillator for given frequency using an op-amp.
- 6) To design an inverting amplifier using Op-amp (741, 351) for dc voltage of given gain
- 7) To design inverting amplifier using Op-amp (741, 351) and study its frequency response
- 8) To design non-inverting amplifier using Op-amp (741, 351) and study frequency response
- 9) To add two dc voltages using Op-amp in inverting and non-inverting mode
- 10) To study the zero-crossing detector and comparator
- 11) To investigate the use of an op-amp as an integrator
- 12) To investigate the use of an op-amp as a differentiator.

- 1) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino and M. A. Miller, 1994, Mc- Graw Hill
- 2) Student Manual for The Art of Electronics, T. C. Hayes and P. Horowitz

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 14c: PHYSICS OF EARTH

Course Title &	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
Physics of Earth PHYSICS DSE – 14c	4	4	0	0	Appeared in Semester 3	

LEARNING OBJECTIVES

This course familiarizes the students with the origin of earth in the solar system and various processes occurring in atmosphere, oceans and earth's internal structure.

LEARNING OUTCOMES

At the end of this course student will be able to,

- Have an overview of structure of the earth as well as various dynamical processes occurring on it.
- Develop an understanding of evolution of the earth.
- Apply physical principles of elasticity and elastic wave propagation to understand modern global seismology as a probe of the Earth's internal structure.
- Understand the origin of magnetic field, geodynamics of earthquakes and the description of seismic sources; a simple but fundamental theory of thermal convection; the distinctive rheological behaviour of the upper mantle and its top.
- Explore various roles played by water cycle, carbon cycle, nitrogen cycles in maintaining steady state of earth leading to better understanding of the contemporary dilemmas (climate change, bio diversity loss, population growth, etc.) disturbing the Earth
- Develop the problem solving skills by adding numerical and simulations to clarify the fundamental concepts.

SYLLABUS OF DSE – 14c

THEORY COMPONENT

Unit – I

The Earth and the Universe:

- a) General characteristics and origin of the Universe. The Big Bang Theory. Estimation of age of the Universe and Hubble constant. Formation of Galaxies. Types of galaxies, Milky Way galaxy, Nebular hypothesis, Solar system, The Terrestrial and Jovian planets (Sizes, Acceleration due to gravity, Obliquity, Flatness, Eccentricity, Density, Temperature, Pressure, Atmosphere, Moons, Exceptions in trends). Titius-Bode law. Asteroid belt. Asteroids: origin types and examples, Meteorites.
- b) Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age. Earth's orbit and spin, the Moon's orbit and spin.
- c) Energy and particle fluxes incident on the Earth.

(10 Hours)

Unit – II

Structure of Earth:

- a) The Solid Earth: topography (Maps, Techniques, Forms of Topographic data).
- b) Internal structure: Core, mental, magnetic field. Origin of the Magnetic field. Convection in Earth's core and production of its magnetic field. Dynamo Theory, calculation of magnetic fields, Causes of variation of Magnetic Field and Palaeomagnetism.
- c) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. Ocean circulations. Oceanic current system and effect of Coriolis forces.
- d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers, permafrost.

Unit – III

Dynamical Processes:

- a) The Solid Earth: Concept of plate tectonics; types of plate movements, hotspots; sea-floor spreading and continental drift.
- b) Geodynamic elements of Earth: Mid Oceanic Ridges, trenches, transform faults and island arcs. Continents, mountains and rift valleys.
- c) Earthquake and earthquake belts. Types and properties of Seismic waves, Richter scale, geophones.
- d) Volcanoes: types, products and distribution.
- e) Concepts of eustasy, air-sea interaction; wave erosion and beach processes. Tides. Tsunamis.

Unit – IV

The Atmosphere

- a) The Atmosphere: Features of different layers, variation of temperature with altitude; Dry, moist and environmental lapse rate, variation of density and pressure with altitude, Types of clouds and formation.
- b) The Atmosphere: Atmospheric circulation. Causes of Atmospheric circulation, Formation of three cells, Easterlies and Westerlies, and ICTZ, Weather and climatic changes. Earth's heat budget. Cyclones and anti-cyclones, tropical storms, hurricanes and tornadoes.
- c) Climate: Earth's temperature and greenhouse effect. Paleoclimate and recent climate changes. The Indian monsoon system.

Unit – V

Disturbing the Earth – Contemporary dilemmas

- a) Human population growth.
- b) Hydrosphere: Fresh water depletion.
- c) Geosphere: Chemical effluents, nuclear waste.
- d) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of ecosystems. Water cycle, Carbon cycle. The role of cycles in maintaining a steady state.
- e) Air Pollution: Types of air pollutants, Effects on atmosphere and living organisms. Ozone Hole.

References:

Essential Readings:

- 1) Planetary Surface Processes, H. J. Melosh, 2011, Cambridge University Press.
- 2) Holme's Principles of Physical Geology, 1992, Chapman & Hall.
- 3) Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emiliani, 1992, Cambridge University Press.
- 4) Physics of the Earth, F. D. Stacey, P. M. Davis, 2008, Cambridge University Press.

35

(15 Hours)

(15 Hours)

(12 Hours)

(8 Hours)

- 5) Environmental Physics: Sustainable Energy and Climate Change, E. Boecker and R.V. Grondelle, 3rd edition, 2011, Wiley, UK
- 6) Atmospheric Remote Sensing (Principles and Applications, Editors S. Tiwari and A. K. Singh, Chapter-1 (Composition and thermal structure of the Earth's atmosphere, by S. K. Dhaka and V. Kumar), 1st edition, Elsevier

Additional Readings:

- 1) The Blue Planet: An Introduction to Earth System Science, B. J. Skinner, S. C. Portere, 1994, John Wiley & Sons.
- 2) Consider a Spherical Cow: A course in environmental problem solving, J. Harte, University Science Books.
- 3) Fundamentals of Geophysics, W. Lowrie, 1997, Cambridge University Press.
- 4) The Solid Earth: An Introduction to Global Geophysics, C. M. R. Fowler, 1990, Cambridge University Press.
- 5) Climate Change: A Very Short Introduction, M. Maslin, 3rd edition, 2014, Oxford University Press.
- 6) The Atmosphere: A Very Short Introduction, P. I. Palmer, 2017, Oxford University Press.
- 7) IGNOU Study material: PHE 15 Astronomy and Astrophysics Block

Category II

Physical Science Courses (with Electronics) with Physics and Electronics discipline as Core Disciplines

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 7: WAVES AND OPTICS

Course Title &	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite	
Code		Lecture	Tutorial	Practical	Criteria	of the course	
Waves and Optics	4	2	0	2	Appeared in		
PHYSICS DSC 7					Semester 3		

LEARNING OBJECTIVES

This is a core course in Physics curriculum that begins with explaining ideas of superposition of harmonic oscillations leading to physics of travelling and standing waves. The course also provides an in depth understanding of wave phenomena of light, namely, interference and diffraction with emphasis on practical applications of the same.

LEARNING OUTCOMES

On successfully completing the requirements of this course, the students will have the skill and knowledge to,

- Understand simple harmonic oscillation and superposition principle.
- Understand superposition of a range of collinear and mutually perpendicular simple harmonic motions and their applications.
- Understand concept of normal modes in stationary waves: their frequencies and configurations.
- Understand interference as superposition of waves from coherent sources derived from same parent source.
- Demonstrate understanding of interference experiments: Young's double slit, Fresnel's biprism, Llyod's mirror, Newton's rings
- Demonstrate basic concepts of diffraction: Superposition of wavelets diffracted from apertures
- Understand Fraunhoffer diffraction from apertures: single slit, double Slit, grating
- Demonstrate fundamental understanding of Fresnel diffraction: Half period zones, diffraction of different apertures
- Laboratory course is designed to understand the principles of measurement and skills in experimental designs.

<u>SYLLABUS OF PHYSICS DSC – 7</u>

THEORY COMPONENT

Unit – I

Superposition of collinear harmonic oscillations: Simple harmonic motion (SHM); linearity and superposition principle; superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (beats).

Superposition of two perpendicular harmonic oscillations: Graphical and analytical methods. Lissajous figures with equal and unequal frequencies and their uses

(11 Hours)

Interference: Division of amplitude and division of wavefront; Young's double slit experiment: width and shape of fringes; Fresnel's biprism; Lloyd's mirror; Phase change on reflection: Stokes' treatment; Interference in thin films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger fringes); Fringes of equal thickness (Fizeau Fringes); Newton's rings: Measurement of wavelength and refractive index

Unit – III

Diffraction:

Fraunhofer diffraction: Single slit, double slit, diffraction grating

Fresnel diffraction: Fresnel's assumptions. Fresnel's half-period zones for plane wave. Explanation of rectilinear propagation of light; Fresnel's diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis

References:

Essential Readings:

- 1) Vibrations and Waves, A. P. French, 1st edition, 2003, CRC press.
- 2) The Physics of Waves and Oscillations, N. K. Bajaj, 1998, Tata McGraw Hill.
- 3) Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- 4) Fundamental of Optics, A. Kumar, H. R. Gulati and D. R. Khanna, 2011, R. Chand Publications.
- 5) Optics, A. Ghatak, 6th edition, 2017, McGraw-Hill Education, New Delhi
- 6) The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.

Additional Readings:

- 1) Principles of Optics, M. Born and E. Wolf, 7th edition, 1999, Pergamon Press.
- 2) Optics, E. Hecht, 4th edition, 2014, Pearson Education.
- 3) Fundamentals of Optics, F. A. Jenkins and H. E. White, 1981, McGraw-Hill

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least 7 experiments to be performed from the following list

- 1) To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 –T law.
- 2) To study Lissajous figures.
- 3) Familiarization with Schuster's focusing and determination of angle of prism.
- 4) To determine refractive index of the material of a prism using sodium light.
- 5) To determine the dispersive power and Cauchy's constants of the material of a prism using mercury light.
- 6) To determine wavelength of sodium light using Fresnel biprism.
- 7) To determine wavelength of sodium light using Newton's rings.
- 8) To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.

(8 Hours)

(11 Hours)

- 9) To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 10) To determine dispersive power and resolving power of a plane diffraction grating.

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal
- 3) Advanced level Physics Practicals, M. Nelson and J. M. Ogborn, 4th edition, reprinted 1985, Heinemann Educational Publishers
- 4) A Laboratory Manual of Physics for undergraduate classes, D. P. Khandelwal, 1985, Vani Pub.
- 5) B.Sc. Practical Physics, G. Sanon, 2019, R. Chand & Co

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 8: MICROPROCESSOR AND MICROCONTROLLER

Course Title &	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
Microprocessor and Microcontroller	4	2	0	2	Appeared in Semester 3	
PHYSICS DSC – 8						

LEARNING OBJECTIVES

This paper introduces the basic concepts of microprocessor and microcontrollers to the undergraduate students. Basic architecture and buildings blocks of a microprocessor and microcontrollers will be discussed in detail. Pin out diagram and the assembly language programming is discussed for both of them. The course is supported by a lab where students will apply the learned concepts and write simple programs to strengthen their classroom learning.

LEARNING OUTCOMES

Upon completion of this course, students will be able to,

- Describe the basic difference between a microprocessor and microcontroller and a general computing system.
- Explain the basic architecture and pin out diagram of 8085 microprocessor and 8051 microcontroller.
- Explain the difference between machine code, mnemonics, assembly language (low level) and high level language.
- Explain the concept of memory, different types of memory available in a system. The concept of memory map and how addresses are assigned to each memory element and peripherals.
- Classify instructions 1-, 2- or 3-byte instructions and into arithmetic, logical types etc.
- Describe the different addressing modes available to perform the same task.
- Write simple programs for 8085 microprocessor and 8051 microcontroller.

SYLLABUS OF PHYSICS DSC - 8

THEORY COMPONENT

Unit – I - Microcomputer organization

Basic organization of a microcomputer/ microprocessor based system, computer memory, memory classification (RAM and ROM), memory organization and addressing, memory interfacing, memory map

Unit – II - 8085 Microprocessor architecture

Main features of 8085, pin-out diagram of 8085, data and address buses, registers, ALU, stack pointer, program counter

41

(4 Hours)

(4 Hours)

Unit – III - 8085 Programming

Instruction classification (data transfer, arithmetic, logical, branch, and control instructions), general discussion on 1 byte, 2 bytes and 3 bytes instructions, subroutines, instruction cycle, timing diagram of MOV and MVI, hardware and software interrupts (general discussion).

Unit – IV - 8051 microcontroller

Microcontroller vs microprocessor, block diagram of 8051 microcontroller, 8051 assembly language programming, program counter and ROM memory map, data types and directives, flag bits and program status word (PSW) register, register banks and stack, jump, loop and call instructions

Unit – V - 8051 I/O port programming

Pin out diagram of 8051 microcontroller, introduction of I/O port and their general features, I/O port programming in 8051 (using assembly language)

Unit – VI - 8051 Programming

8051 addressing modes and accessing memory locations using various addressing modes, arithmetic and logic instructions

References:

Essential Readings:

- 1) Microprocessor Architecture Programming and applications with 8085, R. S. Goankar, 2002, Prentice Hall.
- 2) Microprocessors and Microcontrollers, K. Kant, 2nd edition, 2016. PHI learning Pvt. Ltd.
- 3) The 8051 Microcontroller, Ayala, Cengage learning, 3rd edition.
- 4) The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, 2nd edition, 2007, Pearson Education India.
- 5) Microprocessor and Microcontrollers, N. Senthil Kumar, 2010, Oxford University Press.
- 6) 8051 Microcontroller, S. Shah, 2010, Oxford University Press.

Additional Readings:

- 1) Embedded Systems: Design and Applications, S. F. Barrett, 2008, Pearson Education India.
- 2) Introduction to embedded system, K. V. Shibu, 1st edition, 2009, McGraw Hill.
- 3) Embedded Microcomputer systems: Real time interfacing, J. W. Valvano, 2011, Cengage Learning.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

There are two options here:

A. Every Student must perform at least 06 experiments each from Section-A and Section-B Or

B. Every Student must perform at least 04 experiments each from Section-A and Section-B and a suitable project based on Arduino.

Section-A: Programs using 8085 Microprocessor

1) Addition and subtraction of two 8 bits numbers using direct addressing mode

(8 Hours)

(3 Hours)

(4 Hours)

(7 Hours)

- 2) Addition and subtraction of two 8 bits numbers using indirect addressing mode
- 3) Addition and subtraction of two 16 bits numbers using direct addressing mode
- 4) Addition and subtraction of two 16 bits numbers using indirect addressing mode
- 5) Multiplication by repeated addition.
- 6) Division by repeated subtraction.
- 7) Handling of 16-bit Numbers.
- 8) Use of CALL and RETURN Instruction.
- 9) Block data handling.
- 10) Parity checking in an 8-bit and 16 bit number.

Section-B: Experiments using 8051 microcontroller:

- 1) To find that the given numbers is prime or not.
- 2) To find the factorial of a number.
- 3) Write a program to make the two numbers equal by increasing the smallest number and decreasing the largest number.
- 4) Use one of the four ports of 8051 for O/P interfaced to eight LED's. Simulate binary counter (8 bit) on LED's.
- 5) Program to glow the first four LEDs then next four using TIMER application.
- 6) Program to rotate the contents of the accumulator first right and then left.
- 7) Program to run a countdown from 9-0 in the seven segment LED display.
- 8) To interface seven segment LED display with 8051 microcontroller and display 'HELP' in the seven segment LED display.
- 9) To toggle '1234' as '1324' in the seven segments LED display.
- 10) Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clockwise direction.
- 11) Application of embedded systems: Temperature measurement & display on LCD

- 1) Microprocessor Architecture Programming and applications with 8085, R. S. Goankar, 2002, Prentice Hall.
- 2) Embedded Systems: Architecture, Programming and Design, R. Kamal, 2008, Tata McGraw Hill.
- The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi, and R. D. McKinlay, 2nd edition, 2007, Pearson Education India.
- 4) 8051 microcontrollers, S. Shah, 2010, Oxford University Press.
- 5) Embedded Microcomputer systems: Real time interfacing, J. W. Valvano, 2011, Cengage Learning

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 11: INTRODUCTION TO NUMERICAL METHODS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
Introduction to Numerical Methods	4	2	0	2	Appeared in Semester 3	Elementary calculus
PHYSICS DSE 11						

LEARNING OBJECTIVES

The main objective of this course is to introduce the students to the field of numerical analysis enabling them to solve a wide range of physics problems. The skills developed during the course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Analyse a physics problem, establish the mathematical model and determine the appropriate numerical techniques to solve it.
- Derive numerical methods for various mathematical tasks such as root finding, interpolation, least squares fitting, numerical differentiation, numerical integration, and solution of initial value problems.
- Analyse and evaluate the accuracy of the numerical methods learned.

In the laboratory course, the students will learn to implement these numerical methods in Python and develop codes to solve various physics problems and interpret the results.

SYLLABUS OF PHYSICS DSE – 11

THEORY COMPONENT

Unit – I

(7 Hours)

Approximation and errors in computing: Introduction to numerical computation, Taylor's expansion and mean value theorem; Floating point computation, overflow and underflow; IEEE single and double precision format; Rounding and truncation error, absolute and relative error, error propagation.

Solutions of algebraic and transcendental equations: Basic idea of iteration method, Bisection method, Secant method, Newton Raphson method; comparison of order of convergence.

Unit – II

(7 hours)

Interpolation: Interpolation and Lagrange polynomial, divided differences, Newton divideddifference form of the interpolating polynomial with equally spaced nodes. Theoretical error in interpolation.

Least Squares Approximation: Least squares linear regression, Least squares regression for

44

exponential and power functions by taking logarithm.

Unit - III

Numerical Differentiation: Using finite difference to approximate derivatives of first and second order using Taylor series and error in this approximation.

Numerical Integration: Newton Cotes quadrature methods; derivation of Trapezoidal and Simpson (1/3 and 3/8) rules from Lagrange interpolating polynomial; error and degree of precision of a quadrature formula; composite formulae for trapezoidal and Simpson methods; Gauss Legendre quadrature method.

Unit - IV

Initial Value Problems: Solution of initial value problems by Euler, modified Euler and Runge Kutta (RK2, RK4) methods; local and global errors, comparison of errors in the Euler and RK methods, system of first order differential equations. Solving higher order initial value problems by converting them into a system of first order equations.

References:

Essential Readings:

- 1) Introduction to Numerical Analysis, S. S. Sastry, 5th edition, 2012, PHI Learning Pvt. Ltd.
- 2) Elementary Numerical Analysis, K. E. Atkinson, 3rd edition, 2007, Wiley India Edition.
- 3) Numerical methods for scientific and engineering computation, M. K. Jain, S. R. K. Iyenger and R. K. Jain, 2012, New Age Publishers
- 4) A Friendly Introduction to Numerical Analysis, B. Bradie, 2007, Pearson India

Additional Readings:

- Numerical Recipes: The art of scientific computing, W. H. Press, S. A. Teukolsky and W. Vetterling, 3rd edition, 2007, Cambridge University Press
- 2) Numerical Methods for Scientists and Engineers, R. W. Hamming, 1987, Dover Publications
- 3) Applied numerical analysis, C. F. Gerald and P. O. Wheatley, 2007, Pearson Education
- 4) Numerical Analysis, R. L. Burden and J. D. Faires, 2011, Brooks/Cole, Cengage Learning
- 5) Numerical Methods, V. N. Vedamurthy and N. Ch. S.N. Iyengar, 2011, Vikas Publishing House

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Assessment is to be done not only on the programming but also on the basis of formulating the problem.
- The list of recommended programs is suggestive only. Students should be encouraged to do more physics applications. Emphasis should be given to formulate a physics problem as mathematical one and solve by computational methods.
- The students should be encouraged to develop and present an independent project.
- At least 12 programs must be attempted (taking two from each unit). The implementation is to be done in Python. Use of scipy inbuilt functions may be encouraged.

(8 Hours)

(8 Hours)

Unit 1

Basic Elements of Python: The Python interpreter, the print statement, comments, Python as simple calculator, objects and expressions, variables (numeric, character and sequence types) and assignments, mathematical operators. Strings, Lists, Tuples and Dictionaries, type conversions, input statement, list methods. List mutability, formatting in the print statement.

Control Structures: Conditional operations, *if, if-else, if-elif-else, while* and *for* Loops, indentation, break and continue, List comprehension. Simple programs for practice like solving quadratic equations, temperature conversion etc.

Functions: Inbuilt functions, user-defined functions, local and global variables, passing functions, modules, importing modules, math module, making new modules. Writing functions to perform simple operations like finding largest of three numbers, listing prime numbers, etc. Use of inbuilt functions to generate pseudo random numbers.

Recommended List of Programs

- a) Make a function that takes a number N as input and returns the value of factorial of N. Use this function to print the number of ways a set of m red and n blue balls can be arranged.
- b) Generate random numbers (integers and floats) in a given range and calculate area and volume of regular shapes with random dimensions.
- c) Write functions to convert Cartesian coordinates of a given point to cylindrical and spherical polar coordinates or vice versa.
- d) Solve quadratic equations for the three cases of distinct real, double real and complex conjugate roots.

Unit 2

NumPy Fundamentals: Importing *Numpy*, Difference between List and NumPy array, Adding, removing and sorting elements, creating arrays using *ones()*, *zeros()*, *random()*, *arange()*, *linspace()*. Basic array operations (*sum, max, min, mean, variance*), 2-d arrays, matrix operations, reshaping and transposing arrays, savetxt() and loadtxt().

Plotting with Matplotlib: *matplotlib.pyplot* functions, plotting of functions given in closed form as well as in the form of discrete data and making histograms

Recommended List of Programs

- (a) To generate data for coordinates of a projectile and plot the trajectory. Determine the range, maximum height and time of flight for a projectile motion.
- (b) To plot the displacement-time and velocity-time graph for the undamped, under damped critically damped and over damped oscillator using *matplotlib* (using given formulae).
- (c) To generate array of N random numbers drawn from a given distribution (uniform, binomial, poisson and gaussian) and draw histogram using *matplotlib* for increasing N to verify the distribution.
- (d) To approximate the elementary functions (e.g. $\exp(x)$, $\sin(x)$, $\cos(x)$, $\ln(1+x)$, etc.) by a finite number of terms of Taylor's series and discuss the truncation error. To plot the function as well the nth partial sum of its series for various values of *n* on the same graph and visualise the convergence of series.

Unit 3

Root Finding: Implement the algorithms for Bisection, Secant and Newton Raphson methods or their combinations to,

(a) Determine the depth up to which a spherical homogeneous object of given radius and density will sink into a fluid of given density.

- (b) Solve transcendental equations like $\alpha = \tan(\alpha)$.
- (c) Approximate nth root of a number up to a given number of significant digits.

Unit 4

Interpolation and Least Square Fitting:

- a) Given a dataset (x, y) with equidistant x values, prepare the Newton's divided difference table. Generate a tabulated data for an elementary function, approximate it by a polynomial and compare with the true function.
- b) Given a dataset (x, y) corresponding to a physics problem, use Lagrange and Newton's forms of interpolating polynomials and compare. Determine the value of y at an intermediate value of x not included in the data set. This may be done with equally spaced and non-equally spaced x-values.
- c) Make Python function for least square fitting, use it for fitting given data (x, y) and estimate the parameters a, b as well as uncertainties in the parameters for the following cases :
 - i. Linear (y = ax + b)
 - ii. Power law $(y = ax^b)$ and
 - iii. Exponential $(y = ae^{bx})$

The real data taken in physics lab may be used here.

d) Compare the interpolating polynomial for a given dataset (following a known form e.g. exponential) with the approximation obtained by least square fitting.

Unit 5

Differentiation and Integration:

- a) To compute the left, right and central approximations for derivative of a function given in closed form. Plot both the function and derivative on the same graph. Plot (using *matplotlib*) the error as a function of step size on a log-log graph, study the behaviour of the plot as step size decreases and hence discuss the effect of round off error.
- b) Use integral definition of error function to compute and plot erf(x) in a given range. Use Trapezoidal, Simpson and Gauss Legendre methods and compare the results for small and large values of x.
- c) Verify the degree of precision of each quadrature rule.
- d) Approximate the value of π by evaluating the integral $\int_0^\infty \frac{1}{x^2+1} dx$ using Simpson and Gauss Legendre method. More integrals may be evaluated.

Unit 6

Initial Value Problems (IVP):

- a) Compare the errors in Euler, RK2 and RK4 by solving a first order IVP with known solution. Reduce the step size to a point where the round off errors takes over.
- b) Radioactive decay: With a given number of initial nuclei and decay constant plot the number of nuclei left as a function of time and determine the half life
- c) Solve a system of two first order differential equations by Euler, RK2 and RK4 methods. Use it to solve an nth order IVP. Solve a damped free and forced harmonic oscillator problem using this.
- d) Solve a physics problem like free fall with air drag or parachute problem using RK method.
- e) Obtain the current flowing in a series LCR circuit with constant voltage for a given set of initial conditions.

- 1) Documentation at the Python home page (<u>https://docs.python.org/3/</u>) and the tutorials there (<u>https://docs.python.org/3/tutorial/</u>).
- 2) Documentation of NumPy and Matplotlib: <u>https://numpy.org/doc/stable/user/</u> and <u>https://matplotlib.org/stable/tutorials/</u>
- 3) Computational Physics, D. Walker, 1st edition, 2015, Scientific International Pvt. Ltd
- 4) An Introduction to Computational Physics, T. Pang, 2010, Cambridge University Press
- 5) Python Programming and Numerical Methods A Guide for Engineers and Scientists, Q. Kong, T. Siauw, A. M. Bayen, 2021, Academic Press

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 12: PHYSICS OF EARTH

Course Title &	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical	Criteria	of the course
Physics of Earth	4	4	0	0	Appeared in	
Physics DSE 12					Semester 5	

LEARNING OBJECTIVES

This course familiarizes the students with the origin of earth in the solar system and various processes occurring in atmosphere, oceans and earth's internal structure.

LEARNING OUTCOMES

At the end of this course student will be able to,

- Have an overview of structure of the earth as well as various dynamical processes occurring on it.
- Develop an understanding of evolution of the earth.
- Apply physical principles of elasticity and elastic wave propagation to understand modern global seismology as a probe of the Earth's internal structure.
- Understand the origin of magnetic field, geodynamics of earthquakes and the description of seismic sources; a simple but fundamental theory of thermal convection; the distinctive rheological behaviour of the upper mantle and its top.
- Explore various roles played by water cycle, carbon cycle, nitrogen cycles in maintaining steady state of earth leading to better understanding of the contemporary dilemmas (climate change, bio diversity loss, population growth, etc.) disturbing the Earth
- Develop the problem solving skills by adding numerical and simulations to clarify the fundamental concepts.

SYLLABUS OF DSE – 12

THEORY COMPONENT

Unit – I

The Earth and the Universe:

- a) General characteristics and origin of the Universe. The Big Bang Theory. Estimation of age of the Universe and Hubble constant. Formation of Galaxies. Types of galaxies, Milky Way galaxy, Nebular hypothesis, Solar system, The Terrestrial and Jovian planets (Sizes, Acceleration due to gravity, Obliquity, Flatness, Eccentricity, Density, Temperature, Pressure, Atmosphere, Moons, Exceptions in trends). Titius-Bode law. Asteroid belt. Asteroids: origin types and examples, Meteorites.
- b) Earth in the Solar system, origin, size, shape, mass, density, rotational and revolution parameters and its age. Earth's orbit and spin, the Moon's orbit and spin.
- c) Energy and particle fluxes incident on the Earth.

(10 Hours)

Unit – II

Structure of Earth:

- a) The Solid Earth: topography (Maps, Techniques, Forms of Topographic data).
- b) Internal structure: Core, mental, magnetic field. Origin of the Magnetic field. Convection in Earth's core and production of its magnetic field. Dynamo Theory, calculation of magnetic fields, Causes of variation of Magnetic Field and Palaeomagnetism.
- c) The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. Ocean circulations. Oceanic current system and effect of Coriolis forces.
- d) The Cryosphere: Polar caps and ice sheets. Mountain glaciers, permafrost.

Unit – III

Dynamical Processes:

- a) The Solid Earth: Concept of plate tectonics; types of plate movements, hotspots; sea-floor spreading and continental drift.
- b) Geodynamic elements of Earth: Mid Oceanic Ridges, trenches, transform faults and island arcs. Continents, mountains and rift valleys.
- c) Earthquake and earthquake belts. Types and properties of Seismic waves, Richter scale, geophones.
- d) Volcanoes: types, products and distribution.
- e) Concepts of eustasy, air-sea interaction; wave erosion and beach processes. Tides. Tsunamis.

Unit – IV

The Atmosphere

- a) The Atmosphere: Features of different layers, variation of temperature with altitude; Dry, moist and environmental lapse rate, variation of density and pressure with altitude, Types of clouds and formation.
- b) The Atmosphere: Atmospheric circulation. Causes of Atmospheric circulation, Formation of three cells, Easterlies and Westerlies, and ICTZ, Weather and climatic changes. Earth's heat budget. Cyclones and anti-cyclones, tropical storms, hurricanes and tornadoes.
- c) Climate: Earth's temperature and greenhouse effect. Paleoclimate and recent climate changes. The Indian monsoon system.

Unit – V

Disturbing the Earth – Contemporary dilemmas

- a) Human population growth.
- b) Hydrosphere: Fresh water depletion.
- c) Geosphere: Chemical effluents, nuclear waste.
- d) Biosphere: Biodiversity loss. Deforestation. Robustness and fragility of ecosystems. Water cycle, Carbon cycle. The role of cycles in maintaining a steady state.
- e) Air Pollution: Types of air pollutants, Effects on atmosphere and living organisms. Ozone Hole.

References:

Essential Readings:

- 1) Planetary Surface Processes, H. J. Melosh, 2011, Cambridge University Press.
- 2) Holme's Principles of Physical Geology, 1992, Chapman & Hall.
- 3) Planet Earth, Cosmology, Geology and the Evolution of Life and Environment, C. Emiliani, 1992, Cambridge University Press.
- 4) Physics of the Earth, F. D. Stacey, P. M. Davis, 2008, Cambridge University Press.

(15 Hours)

(15 Hours)

(12 Hours)

(8 Hours)

- 5) Environmental Physics: Sustainable Energy and Climate Change, E. Boecker and R.V. Grondelle, 3rd edition, 2011, Wiley, UK
- 6) Atmospheric Remote Sensing (Principles and Applications, Editors S. Tiwari and A. K. Singh, Chapter-1 (Composition and thermal structure of the Earth's atmosphere, by S. K. Dhaka and V. Kumar), 1st edition, Elsevier

Additional Readings:

- 1) The Blue Planet: An Introduction to Earth System Science, B. J. Skinner, S. C. Portere, 1994, John Wiley & Sons.
- 2) Consider a Spherical Cow: A course in environmental problem solving, J. Harte, University Science Books.
- 3) Fundamentals of Geophysics, W. Lowrie, 1997, Cambridge University Press.
- 4) The Solid Earth: An Introduction to Global Geophysics, C. M. R. Fowler, 1990, Cambridge University Press.
- 5) Climate Change: A Very Short Introduction, M. Maslin, 3rd edition, 2014, Oxford University Press.
- 6) The Atmosphere: A Very Short Introduction, P. I. Palmer, 2017, Oxford University Press.
- 7) IGNOU Study material: PHE 15 Astronomy and Astrophysics Block

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES

GENERIC ELECTIVE (GE – 15): QUANTUM MECHANICS

Course Title & Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite of	Department
	Creatis	Lecture	Tutorial	Practical	Criteria	the course	course
Quantum Mechanics GE – 15	4	3	1	0	Appeared in previous Semester	GE Modern Physics of this course or its equivalent	Physics and Astrophysics

LEARNING OBJECTIVES

The development of quantum mechanics has revolutionized the human life. In this course, the students will be exposed to the probabilistic concepts of basic non-relativistic quantum mechanics and its applications to understand the sub atomic world.

LEARNING OUTCOMES

After completing this course, the students will be able to,

- Learn the methods to solve time-dependent and time-independent Schrödinger equation.
- Characteristics of an acceptable wave function for any sub atomic particle in various potentials.
- Applications of the Schrodinger equation to different cases of potentials namely infinite and finite potential well, step potential, rectangular potential barrier, harmonic oscillator potential.
- Solve the Schrodinger equation in 3-D.
- Understand the spectrum and eigen functions for hydrogen atom

SYLLABUS OF GE - 15

THEORY COMPONENT

Unit – I

Review of Schrodinger wave equation, applicability of operator, eigenvalues, eigenfunction, normalisation, expectation value to various kinds of potential, Superposition Principle, linearity of Schrodinger equation, General solution as a linear combination of discrete stationary states, Observables as operators, Commutator of position and momentum operators, Ehrenfest's theorem. Applicability to various kinds of wave functions

Unit – II

(15 Hours)

(10 Hours)

General discussion of bound states in an arbitrary potential: Continuity of wave function, boundary conditions and emergence of discrete energy levels. Application to energy eigen states for a particle in a finite square potential well, reflection and transmission across step potential and rectangular potential barrier. Fourier transforms and momentum space wave

function, time evolution of Gaussian wave packets, Uncertainty principle

Unit – III

Harmonic oscillator: Energy eigen values and eigen states of a 1-D harmonic oscillator using algebraic method (ladder operators) and using Hermite polynomials. Zero point energy and uncertainty principle. Applications to various kinds of wave functions

Unit – IV

(10 Hours)

(10 Hours)

Schrödinger Equation in three dimensions: Probability and probability densities in 3D. Schrödinger equation in spherical polar coordinates, its solution for Hydrogen atom solution using separation of angular and radial variables, Angular momentum operator, quantum numbers and spherical harmonics. Radial wave functions from Frobenius method, Orbital angular momentum quantum numbers 1 and ml, s, p, d shells

References:

Essential Readings:

- Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 6th edition, 2019, Laxmi Publications, New Delhi.
- 2) Introduction to Quantum Mechanics, D. J. Griffith, 2nd edition, 2005, Pearson Education.
- A Text book of Quantum Mechanics, P. M. Mathews and K. Venkatesan, 2nd edition, 2010, McGraw Hill.
- 4) Quantum Mechanics, B. H. Bransden and C. J. Joachain, 2nd edition, 2000, Prentice Hall
- 5) Quantum Mechanics: Concepts and Applications, 2nd edition, N. Zettili, A John Wiley and Sons, Ltd., Publication
- 6) Atomic Physics, S. N. Ghoshal, 2010, S. Chand and Company

Additional Readings:

- 1) Quantum Mechanics for Scientists & Engineers, D. A. B. Miller, 2008, Cambridge University Press.
- 2) Introduction to Quantum Mechanics, R. H. Dicke and J. P. Wittke, 1966, Addison-Wesley Publications
- 3) Quantum Mechanics, L. I. Schiff, 3rd edition, 2010, Tata McGraw Hill.
- 4) Quantum Mechanics, R. Eisberg and R. Resnick, 2nd edition, 2002, Wiley
- 5) Quantum Mechanics, B. C. Reed, 2008, Jones and Bartlett Learning.
- 6) Quantum Mechanics, W. Greiner, 4th edition, 2001, Springer.
- 7) Introductory Quantum Mechanics, R. L. Liboff, 4th edition, 2003, Addison Wesley

GENERIC ELECTIVE (GE – 16) INTRODUCTION TO EMBEDDED SYSTEM

Course Title &	Credits	Cre	dit distrik of the cou	oution rse	Eligibility	Pre-	Department
Code	Creates	Lecture	Tutorial	Practical	Criteria	the course	course
Introduction to Embedded System Design GE – 16	4	2	0	2	Appeared in previous semester	NIL	Physics and Astrophysics

LEARNING OBJECTIVES

This paper aims to introduce the basic concepts or fundamentals of embedded system design to students not majoring in physics. The course covers the comprehensive introduction to embedded systems, their role and application areas in our daily life. Basic elements needed to design a typical embedded system are discussed to provide the students a broader perspective. Specific applications of embedded systems which are a part of our daily life were discussed. In the end Arduino Uno is introduced.

LEARNING OUTCOMES

Upon completion of this course, students will be able to,

- Learn about an embedded system and how it is different than a general purpose computing system like computer or laptop etc.
- The student should be able to identify various embedded systems available around us in our daily life.
- Classify embedded systems based on generation, complexity and performance, major applications areas etc.
- Explain the domains and areas of applications of embedded systems. The students should be able to get a broader perspective of different embedded systems available in industry, telecom, photography, homes, automobile, aviation and ship industry etc.
- Explain the roles and uses of various components like microcontroller, memory, sensors and actuators, interface types etc. of embedded systems.
- Know the basic characteristics and quality attributes that any typical embedded system must possess.
- This paper is designed in such a way that the students will be able to connect the textbook knowledge with basic design and working of the various embedded systems present in our daily life. By the end of this course the student will have a fairly good idea of embedded systems and the gained knowledge will be helpful in predicting the possible design and working of an unknown system. Arduino Uno is introduced so that students can learn how to use different sensors to control different processes.

SYLLABUS OF GE - 16

THEORY COMPONENT

UNIT – I - Introduction to Embedded Systems

Embedded systems, historical background, difference between an embedded systems and general computing systems, classification of embedded systems based on generation, complexity and performance, major applications areas, purpose of embedded systems like in data collection/storage/representation, data communication, data/signal processing, monitoring, control, application specific user interface.

Unit – II - Elements of Embedded System

Core of the embedded system: General purpose and domain specific processors like microprocessors, microcontrollers and digital signal processors, application specific integrated circuits (ASICs), programmable logic devices (PLDs), commercial off-the-shelf components (COTS), reduced instruction set computing (RISC) and complex instruction set computing (CISC), Harvard vs Von-Neumann architecture, different types of memory (RAM, ROM, Storage etc) their classification and different versions, reset circuit, oscillator unit

Unit - III - Peripheral devices, sensors and actuators

General discussion on light emitting dodes (LEDs), 7-segment LED display, piezo buzzer, push button switch, keypad or keyboard (discuss design using push button switches), relay (single pole single throw), LDR, thermistor, IR sensor, ultrasonic sensor, opto-coupler, DC motors, servo motor, stepper motor (unipolar and bipolar)

Unit – IV - Communication Interface

Serial and parallel interface, universal serial bus (USB), Infra-red data transfer, bluetooth (BT), Wi-Fi, general packet radio Service (GPRS), 3G, 4G, LTE

Unit – V - Characteristics and quality attributes of an embedded systems (3 Hours)

Characteristics: Application and domain specific, reactive and real time, operation under harsh environments, distributed or stand alone, size and weight, power consumption Operational and non-operational attributes: response time, throughput, reliability, maintainability, security, safety, testability and debug-ability, evolvability, portability, cost and revenue

Unit – VI - Applications of Embedded Systems

General discussion on the design and working of washing machine, refrigerator, microwave oven, automobiles, mobile phones, hearing aid device, electrocardiogram (ECG), AC or TV remote control system, smart watch, digital camera and laser printers etc.

Unit – VII - Introduction to Arduino

Pin diagram and description of Arduino UNO, basic programming and applications

References:

Essential Readings:

- 1) Introduction to embedded system, K. V. Shibu, 1st edition, 2009, McGraw Hill
- 2) Embedded Systems: Architecture, Programming and Design, R. Kamal, 2008, Tata McGraw Hill
- 3) Embedded Systems and Robots, S. Ghoshal, 2009, Cengage Learning.
- 4) Embedded Microcomputer systems: Real time interfacing, J. W. Valvano, 2011, Cengage Learning
- 5) Embedded System, B. K. Rao, 2011, PHI Learning Pvt. Ltd.
- 6) Programming Arduino: Getting Started with Sketches, S. Monk, 2nd edition, McGraw Hill

(6 Hours)

(2 Hours)

(6 Hours)

(3 Hours)

(4 Hours)

(6 Hours)

7) Arduino: Getting Started With Arduino and Basic Programming with Projects by E. Leclerc

Additional Readings:

- The 8051 Microcontroller and Embedded Systems Using Assembly and C, M. A. Mazidi, J. G. Mazidi and R. D. McKinlay, 2nd edition, 2007, Pearson Education
- 2) Microprocessors and Microcontrollers, K. Kant, 2nd edition, 2016, PHI learning Pvt. Ltd.
- 3) The 8051 Microcontroller, Ayala, 3rd edition, Cengage learning

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Every student must perform at least six experiments from the following list
- Mandatory exercise for all students: Familiarization with power supply, function generator, CRO/DSO, multimeter, bread board etc. Measure the frequency and amplitude (pp or rms) of a given signal using CRO/DSO. (The purpose is to acquaint the students with these instruments so that they can have a basic understanding of these instruments).

ARDUINO based Experiments:

- 1) Flashing LEDs ON/OFF after a given delay.
- 2) Design a simple transmitter and receiver circuit using IR LED and a detector and use it for obstacle detection.
- 3) Interface a simple relay circuit to switch ON and OFF a dc motor/LED.
- 4) Interface DC motor to Arduin Uno and rotate it clockwise and anticlockwise.
- 5) Interface Servo motor to Arduin Uno and rotate it clockwise and anticlockwise for a given angle.
- 6) Interface an ADC and read the output of the LDR sensor. Display the value on the serial monitor.
- 7) To design an alarm system using an Ultrasonic sensor.
- 8) To design a counter/Motion sensor alarm using IR Led and Detector
- 9) To design a circuit to control ON/OFF of LED light using LDR.
- 10) To design a circuit to control ON/OFF of a process using a thermistor.
- 11) To design a thermistor based thermometer.
- 12) Control the speed of the DC motor using LDR.

- 1) Arduino Programming: 3 books in 1 The Ultimate Beginners, Intermediate and Expert Guide to Master Arduino Programming, R. Turner
- 2) Arduino: Getting Started With Arduino and Basic Programming with Projects, E. Leclerc
- 3) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino, M. A. Miller, 1994, McGraw Hill.
- 4) Electronic Devices and circuit theory, R. L. Boylestad and L. D. Nashelsky, 2009, Pearson
- 5) Electronics: Fundamentals and Applications, J. D. Ryder, 2004, Prentice Hall.
- 6) Modern Electronic Instrumentation and Measurement Tech., Helfrick and Cooper, 1990, PHI Learning.

GENERIC ELECTIVE (GE – 17) NANO PHYSICS

Course Title &	Credits	Cre	dit distrik of the cou	oution rse	Eligibility	Pre-	Department
Code	creatis	Lecture	Tutorial	Practical	Criteria	the course	course
Nano Physics GE – 17	4	2	0	2	Appeared in previous semester	NIL	Physics and Astrophysics

LEARNING OBJECTIVES

The syllabus introduces the basic concepts of nanomaterials, their synthesis, properties exhibited by them and finally few applications. Various nanomaterial synthesis/growth methods and characterizations techniques are discussed to explore the field in detail. The effect of dimensional confinement of charge carries on the electrical, optical and structural properties will be discussed. Interesting experiments which shape this filed like conductance quantization in 2DEG (Integer Quantum Hall Effect) and coulomb blockade are introduced. The concept of micro- and nano-electro mechanical systems (MEMS and NEMS) and important applications areas of nanomaterials are discussed.

LEARNING OUTCOMES

On successful completion of the course students should be able to,

- Explain the difference between nanomaterials and bulk materials and their property difference.
- Explain various methods for the synthesis/growth of nanomaterials.
- Explain the role of confinement on the density of state function and so on the various properties exhibited by nanomaterials compared to bulk materials.
- Explain the concept of quasi-particles such as excitons and how they influence the optical properties.
- Explain the direct and indirect band gap semiconductors, radiative and non-radiative processes and the concept of luminescence.
- Explain the structure of 2DEG system and its importance in quantum transport experiments, like integer quantum Hall effect and conductance quantization.
- Explain the conductance quantization in 1D structure and its difference from the 2DEG system.
- Explain the necessary and sufficient conditions required to observe coulomb blockade, single electron transistor and the scope of these devices.
- Explain how MEMS and NEMS devices are produced and their applications.

SYLLABUS OF GE - 17

THEORY COMPONENT

Unit – I – Introduction

(3 Hours)

Basic introduction to nano-science and technology - Implications on nanoscience on fields

like Physics, Chemistry, Biology and Engineering, Classifications of nanostructured materials as quantum dots (0D), nanowires (1D), Thin films (2D) and Multilayered materials or super lattices; introduction to properties like mechanical, electronic, optical, magnetic and thermal properties and how they change at nano scale dimensions to motivate students (qualitative only).

Unit – II - Nanoscale Systems

Brief review of Schrodinger equation and its applications in- Infinite potential well, potential step and potential box problems, band structure and density of states of 3D and 2D systems in detail and qualitatively for 1D and 0D, confinement of charges in nanostructures their consequences on electronic and optical properties.

Unit – III - Properties of Nano Scale systems

Time and length scales (diffusion, elastic and inelastic lengths etc.) of electrons in nanostructured materials, Carrier transport in nanostructures: diffusive and ballistic transport

2D naomaterials: Conductance quantization in 2DEG in GaAs and integer quantum hall effect (semi-classical treatment)

1D nanomaterials: Conductance quantization in 1D structures using split gate in 2DEG system (Qualitative)

0D nanomaterials: Charging effect, Coulomb Blockade effect, Single Electron Transfer (SET) device

Basic understanding of excitons in semiconductors and their consequence on optical properties of the material

Unit – IV - Synthesis of Nanomaterials (Qualitative)

Top down and Bottom up approach, Ball milling, Spin Coating

Vacuum deposition: Physical vapor deposition (PVD): Thermal evaporation, Sputtering, Chemical vapor deposition (CVD).

Preparation of colloidal solutions of Metals, Metal Oxide nanoparticles

Unit – V - Applications (Qualitative)

Micro Electromechanical Systems (MEMS), Nano-electromechanical Systems (NEMS), Applications of nanomaterials as probes in medical diagnostics and targeted drug delivery, sunscreen, lotions, and paints and other examples to give broader perspective of applications of nanomaterials

References:

Essential Readings:

- 1) Introduction to Nanotechnology, C. P. Poole and Jr. Frank J. Owens, 1st edition, 2003, Wiley India Pvt. Ltd.
- 2) Nanotechnology: Principles and Practices, S. K. Kulkarni, 2nd edition, 2011, Capital **Publishing Company**
- 3) Introduction to Nanoscience and Technology, K. K. Chattopadhyay and A. N. Banerjee, 2009, PHI Learning Private Limited
- 4) Introduction to Nanoelectronics, V. V. Mitin, V. A. Kochelap and M. A. Stroscio, 2011, Cambridge University Press
- 5) Nanotechnology for Dummies, R. Booker and E. Boysen, 2005, Wiley Publishing Inc.
- 6) Introductory Nanoscience, M. Kuno, 2012, Garland science Taylor and Francis Group
- 7) Electronic transport in mesoscopic systems, S. Datta, 1997, Cambridge University Press.
- 8) Fundamentals of molecular spectroscopy, C. N. Banwell and E. M. McCash, 4th edition,

(4 Hours)

(8 Hours)

(10 Hours)

(5 Hours)

McGrawHill

Additional Readings:

- 1) Quantum Transport in semiconductor nanostructures, C. Beenakker and H. Van Houten, 1991, available at arXiv: cond-mat/0412664) Open Source
- 2) Ph.D. thesis, S. Cronewett, 2001, Available as Arxiv
- 3) Solid State Physics, J. R. Hall and H. E. Hall, 2nd edition, 2014, Wiley

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) Synthesis of metal (e.g. Au/Ag) nanoparticles by chemical route and study its optical absorption properties.
- 2) Synthesis of semiconductor (CdS/ZnO/TiO₂/Fe₂O₃ etc) nanoparticles and study its XRD and optical absorption properties as a function of ageing time.
- 3) Surface Plasmon study of metal nanoparticles as a function of size by UV-Visible spectrophotometer.
- 4) Analysis of XRD pattern of given nanomaterial and estimate lattice parameters and particle size.
- 5) To study the effect of the size nanoparticles on its color.
- 6) To prepare composite of CNTs with other materials and study their optical absorption/Transmission properties.
- 7) Growth of metallic thin films using thermal evaporation technique.
- 8) Prepare a ceramic disc of a given compound and study its XRD/I-V characteristics/ measure its dielectric constant or any other property.
- 9) Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study its XRD and transmittance spectra in UV-Visible region.
- 10) Prepare thin film capacitor and measure capacitance as a function of temperature or frequency.
- 11) Fabricate a pn junction diode by diffusing Al over the surface of N-type Si/Ge and study its V-I characteristic.
- 12) Fabricate thin films (polymer, metal oxide) using electro-deposition
- 13) To study variation of resistivity or sheet resistance with temperature of the fabricated thin films using four probe method.

- 1) Introduction to Nanotechnology, C. P. Poole and Jr. Frank J. Owens, 1st edition, 2003, Wiley India Pvt. Ltd.
- Nanotechnology: Principles and Practices, S. K. Kulkarni, 2nd edition, 2011, Capital Publishing Company
- 3) Introduction to Nanoscience and Technology, K. K. Chattopadhyay and A. N. Banerjee, 2009, PHI Learning Private Limited
- 4) Nanotechnology for Dummies, R. Booker and E. Boysen, 2005, Wiley Publishing Inc.

GENERIC ELECTIVE (GE – 18): PHYSICS OF DETECTORS

Course Title &	Credits	Cre	edit distril of the cou	oution rse	Eligibility	Pre-requisite	Department
Code	Creatis	Lecture	Tutorial	Practical	Criteria	of the course	course
Physics of Detectors	4	3	1	0	Appeared in previous	GE Modern Physics of this	Physics and
GE – 18		_		-	Semester	course or its equivalent	Astrophysics

LEARNING OBJECTIVES

A detector is necessary for every physical measurement, and experimental physicists must be proficient in detector physics. The course will provide an overview of radiation and particle detectors, as well as how to use them in various experimental physics settings and application fields. The course covers the theory of detectors, their design and operation including electronic readout systems and signal processing. The fundamental physics processes for detecting radiation and particles are covered in the course, which include the photoelectric effect, Compton scattering, pair creation, excitation, ionization, bremsstrahlung, Cherenkov radiation, nuclear reactions, and secondary emissions.

LEARNING OUTCOMES

After completion of this course, students are expected to be able to,

- Understand the different types underlying fundamental physical processes for the detection of radiation and particles
- Acquire knowledge of design principles and characteristics of different types of detector
- Acquire knowledge of electronic readout systems and signal processing
- Assess the applicability of different types of detectors and detector systems in various fields of physics and applied sciences.

SYLLABUS OF GE - 18

THEORY COMPONENT

Unit – I

Interaction of Radiation with matter: Interaction of radiation with matter (e.m. charged particles); detection of charged particles in magnetic field and measurement of charge to mass ratio; energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation; gamma ray interaction through matter (photoelectric effect, Compton scattering, pair production); Dependence of electron and photon energy spectrum on materials (increasing Z); neutron interaction with matter

Unit – II

Introduction to detectors: Basic principle of detector operation and its modes of operation, pulse height spectra, various detector performance parameters: response time, energy resolution, fano factor, efficiency: intrinsic and extrinsic, dead time.

(12 Hours)

(8 Hours)
(16 Hours)

Unit – III

Detectors:

Gas detectors: Detector gases, gas detector characteristics, different types of detectors: gas filled ionization detectors (ionization chamber), bubble and cloud chambers, proportional counters, multi wire proportional counters (MWPC), Geiger Mueller (GM) counters and avalanche counters, gaseous multiplication detector.

Scintillation detectors: General characteristics, organic scintillators (anthracene and plastic), inorganic crystals (NaI(Tl), CsI(Tl)), Charge Coupled Devices (CCD)

Photomultipliers: Basic construction and operation, time response and resolution, noise, gain stability; scintillation counter operation

Semiconductor detectors: Doped semiconductors, np semiconductor junction, depletion depth, detector characteristics of semiconductors. silicon and germanium detectors

Neutron detectors (gas-filled, scintillation, and semiconducting): slow and fast neutron detectors

Bolometric detectors: Working principle, characteristics and use of infrared detectors

Unit - IV

(5 Hours)

Electronics, signal processing and techniques for data acquisition and analysis: Basic idea of analog and digital signal processing, noise and its types; instrumentation standards for nuclear instruments: NIM, ECL; TTL standards

Data acquisition system: VME and Digital pulse processing system.

Unit - V

(4 Hours)

Application of detectors: for particle physics experiments, for nuclear physics, for astrophysics and cosmology, medical physics and imaging, by giving two examples each.

References:

Essential Readings:

- 1) Radiation detection and measurement, G. F. Knoll, 2010, John Wiley and Sons
- Principles of radiation interaction in matter and detection, C. Leroy and P. G. Rancoita, 3rd edition, 2011, World Scientific
- 3) Techniques for Nuclear and Particle Physics experiments, W. R. Leo, 1994, Springer
- 4) Nuclear Radiation Detectors, S. S. Kapoor and V. S. Ramamurthy, 1st edition, John Wiley and Sons.
- 5) Physics and Engineering of Radiation Detection, S. N. Ahmed, 2007, Academic Press Elsevier
- 6) Semiconductor detectors: New developments, E. Gatti and P. Rehak, 2002, Springer

Additional Readings:

- 1) Radiation Detection for Nuclear Physics Methods and industrial applications, D. Jenkins
- 2) Advanced Nuclear Radiation Detectors Materials, processing, properties and applications, A. K. Batra, IOP Publishing
- 3) Measurement and Detection of Radiation, N. Tsoulfanidis et al., 4th edition, T and F CRC
- 4) Principles of nuclear radiation detection, G. G. Eichholz and J. W. Poston, CRC
- 5) Introduction to Nuclear Radiation Detectors: 2, Laboratory Instrumentation and Techniques, P. Ouseph, Springer
- 6) Detectors for Particle Radiation, K. Kleinknecht, Cambridge
- 7) Particle Detectors, C. Grupen, Cambridge
- 8) Handbook of Particle Detection and Imaging, C. Grupen and I. Buvat

GENERIC ELECTIVE (GE – 19): NUCLEAR AND PARTICLE PHYSICS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-	Department
Code	Code Credits Lecture Tutorial Practical		Criteria	the course	course		
Nuclear and Particle Physics GE – 19	4	3	1	0	Appeared in previous Semester	NIL	Physics and Astrophysics

LEARNING OBJECTIVES

This course imparts the understanding of the sub atomic particles and their properties; introduces various nuclear phenomena and their applications, interactions of basic building blocks of matter through fundamental forces, the inherent discrete symmetries of particles and complements each and every topic with applications and problems.

LEARNING OUTCOMES

After completion of this course, students are expected to have an understanding of,

- Nuclear charge and mass density, size, magnetic and electric moments
- Theoretical principles and experimental evidences towards modelling the nucleus •
- Kinematics of nuclear reactions and decays
- Energy loss of radiation during propagation in medium
- Principles of nuclear detection technique
- Classification of fundamental forces based on their range, time-scale and mediator mass.
- Scattering cross-sections of 2 to 2 processes and their inherent symmetries.
- Angular and energy distributions for three body decay process.
- Discrete symmetries of nature and associated conservation laws
- Colour triplet quarks and anti-quarks as constituents of observed colour singlet baryons and mesons.

SYLLABUS OF GE 19

THEORY COMPONENT

Unit – I

General properties of nuclei: Constituents of nucleus and their Intrinsic properties: quantitative facts about mass, radii, charge density, matter density, binding energy, N/Z plot, angular momentum, parity, magnetic moment, electric moments.

Unit – II

Nuclear models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, evidence for nuclear shell structure and the basic assumptions of shell model, magic numbers.

Unit – III

(5 Hours)

(5 Hours)

(7 Hours)

Radioactivity decay: Decay rate and equilibrium (secular and transient)

(a) Alpha decay: basics of α -decay processes, Gamow factor, Geiger Nuttall law, α -decay spectroscopy, decay Chains.

(b) β -decay: energy kinematics for β -decay, β -spectrum, positron emission, electron capture, neutrino hypothesis.

(c) Gamma decay: Gamma ray emission from the excited state of the nucleus and kinematics, internal conversion.

Unit – IV

(5 Hours) Nuclear reactions: Kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, Coulomb scattering (Rutherford scattering).

Unit – V

Interaction of nuclear radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation; Gamma ray interaction through matter Detector for nuclear radiations: Basics of types of detectors: gas detectors, scintillation detector, semiconductor detector (principle, schematics of construction and working)

Unit – VI

Particle Physics: Overview of particle spectrum and their interactions in the Standard Model; range, time-scale and relative strength of interactions; interactions at a distance mediated by

virtual particles (Exchange Force) Kinematics for $2 \rightarrow 2$ scattering processes and crossing symmetries of scattering amplitudes; angular and energy distributions of decaying particles in $1 \rightarrow 3$ decay processes (muon decay/beta decay); identification of invisibles (neutrinos) from energy and transverse momentum distributions

Lepton and Baryon quantum numbers; isospin, strangeness and hypercharge; Gell-Mann-Nishijima formula; parity and charge conjugation of a particle state; time reversal and general CPT theorem

Valence quark model of Murray Gell-Mann and Yuval Ne'eman, current and constituent masses of quarks, flavor symmetry isospin triplets, baryon octet, decuplet and meson octet; existence of Δ^{++} baryon as a clue for necessity of colour quantum number; evidence for colour triplet quarks from e^+e^- annihilation experiment; confinement of quarks, antiquarks and gluons in hadrons

High energy scattering experiments at linear and circular colliders, inelastic collisions at hadron colliders; elastic and inelastic neutrino-nucleus scattering experiments

References:

Essential Readings:

(A) For Nuclear Physics

- 1) Basic ideas and concepts in nuclear physics: An introductory approach, K. Heyde, 3rd edition, 1999, IOP Publication
- 2) Introductory Nuclear Physics, K. S. Krane, 2008, Wiley-India Publication
- 3) Nuclear Physics, S. N. Ghoshal, 1st edition, 2010, S. Chand Publication
- 4) Nuclear Physics: Principles and applications, J. Lilley, 2006, Wiley Publication
- 5) Concepts of Nuclear Physics, B. L. Cohen, 1974, Tata McGraw Hill Publication
- 6) Radiation detection and measurement, G. F. Knoll, 2010, John Wiley and Sons

(B) For Particle Physics

1) Modern Particle Physics, M. Thompson, 2013, Cambridge University Press

(8 Hours)

(15 Hours)

- 2) Particles and Nuclei: An Introduction to the Physical Concepts, B. Povh, K. Rith, C. Scholz, F. Zetsche and W. Rodejohann, 2015, Springer-Verlag
- 3) An Introductory Course of Particle Physics, P. B. Pal, 2015, CRC Press
- 4) Introduction to High Energy Physics, D. H. Perkins, 4th edition, 2000, Cambridge University Press
- 5) Introduction to elementary particles, D. J. Griffiths, 2008, Wiley
- 6) Quarks and Leptons, F. Halzen and A. D. Martin, 1984, John Wiley

Additional Readings:

References for Tutorial

- 1) Problems and Solutions in Nuclear and Particle Physics, S. Petreta, 2019, Springer
- 2) Schaum's Outline of Modern Physics, 1999, McGraw-Hill
- 3) Schaum's Outline of College Physics, E. Hecht, 11th edition, 2009, McGraw Hill
- 4) Problems and Solutions on Atomic, Nuclear and Particle Physics, Yung-Kuo Lim, 2000, World Scientific
- 5) Nuclear Physics "Problem-based Approach" including MATLAB, H. M. Aggarwal, 2016, PHI Learning Pvt. Ltd

GENERIC ELECTIVE (GE – 20): ATOMIC AND MOLECULAR PHYSICS

Course Title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite of the	Department
Code	Creuits	Lecture	Tutorial	Practical	Criteria	course	course
Atomic and Molecular Physics GE – 20	4	3	1	0	Appeared in previous Semester	GE Modern Physics and GE Quantum Mechanics of this course or their equivalent	Physics and Astrophysics

LEARNING OBJECTIVES

This course introduces the basic concepts of atomic, molecular and nuclear physics to an undergraduate student. Advanced mathematics is avoided and the results of quantum mechanics are attempts to explain, or even to predict, the experimental observations of spectroscopy. The student will be able to visualize an atom or molecule as a physical entity rather than a series of mathematical equations.

LEARNING OUTCOMES

On successful completion of the module students should be able to elucidate the following main features.

- Stern-Gerlach experiment, electron spin, spin magnetic moments
- Space quantization and Zeeman effect
- Spectral notations for atomic and molecular states and corresponding term symbols
- Understanding of atomic spectra and molecular spectra
- Basic principle of Raman spectroscopy and Franck Condon principle
- To complete scientific potential lies on the way we are able to interpret the fundamental astrophysical and nuclear data. This acquired knowledge will be a common base for the areas of astrophysics, nuclear, medical, geology and other inter-disciplinary fields of Physics, Chemistry and Biology. Special skills required for the different fields will be enhanced.

SYLLABUS OF GE 20

THEORY COMPONENT

Unit – I – Atomic Physics

One-electron atoms: Degeneracy of energy levels and selection rules, modes of relaxation of an excited atomic state, line intensities and the lifetimes of excited states, line shapes and widths

Fine structure of hydrogenic atoms: Shifting of energy levels, splitting of spectral lines, relativistic correction to kinetic energy, spin-orbit term, Darwin term, fine structure spectral lines, Lamb shift (qualitative idea)

Atoms in external magnetic fields: Larmor's theorem, Stern-Gerlach experiment, normal Zeeman effect, Paschen Back effect, and anomalous Zeeman effect, g-factors

Two and multi-electron systems: Spin multiplicity, singlet and triplet states and selection rules in helium atom, central field approximation, Aufbau and Pauli exclusion principle,

(23 Hours)

Slater determinant, LS and JJ coupling scheme (equivalent and non-equivalent electrons), term symbols and Hund's rule, Lande' interval rule

Qualitative Discussion of: Lamb shift and Auger effect.

Unit – II - Molecular Physics

(22 Hours)

Electronic states of diatomic molecules: Linear combination of atomic orbitals (LCAO), bonding and antibonding orbitals; 'gerade', 'ungerade', molecular orbitals and the ground state electronic configurations for homo and hetero-nuclear diatomic molecules, classification of molecular excited states of diatomic molecule, Vector representation of Orbital and electron spin angular momenta in a diatomic molecule, The Born-Oppenheimer approximation, Concept of Potential energy curve for a diatomic molecule, Morse potential. The Franck-Condon principle

Molecular Spectra of diatomic molecule: Rotational Spectra (rigid and non-rigid rotor), Vibrational Spectra (harmonic and anharmonic), Vibration-Rotation Spectrum of a diatomic molecule, Isotope effect, Intensity of spectral lines

Raman Effect: Classical Theory (with derivation) of Raman effect, pure rotational Raman Lines, Stoke's and Anti-Stoke's Lines, comparison with Rayleigh scattering

Idea of spin resonance spectroscopy (Nuclear Magnetic Resonance, Electron Spin Resonance) with few examples, estimation of magnetic field of the Sun.

References:

Essential Readings:

- 1) Physics of Atoms and Molecules, B. H. Bransden and C. J. Jochain, 2nd edition, Pearson
- 2) Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, 1994, Tata McGraw Hill
- 3) Atomic physics, J. B. Rajam and foreword by Louis De Broglie, 2010, S. Chand and Co.
- 4) Atoms, Molecules and Photons, W. Demtroder, 2nd edition, 2010, Springer
- 5) Atomic, Nuclear and. Particle Physics. Compiled by. The Physics Coaching Class. University of science and Technology of China, edited By Yung-Kuo Lim. World scientific.
- 6) Atomic Physics, S. N. Ghoshal, 2019, S. Chand Publication
- Introduction to Spectroscopy, D. L. Pavia, G. M. Lampman, G. A. Kriz and J. R. Vyvyan, 5th edition, 2014, Brookes/Cole

Additional Readings:

- 1) Basic Atomic and Molecular Spectroscopy, J. M. Hollas, Royal Society of Chemistry
- 2) Molecular Spectra and Molecular Structure, G. Herzberg
- 3) Introduction to elementary particles, D. J Griffiths, 2008, Wiley
- 4) Atomic and molecular Physics, R. Kumar, 2013, Campus Book Int.
- 5) The Fundamentals of Atomic and Molecular Physics, Undergraduate Lecture Notes in Physics, 2013, Springer

SEMESTER-V

B. SC. (HONOURS) PHYSICS

DISCIPLINE SPECIFIC CORE COURSE – DSC - 13: ELECTROMAGNETIC THEORY

Course Title &	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of the course
Code		Lecture	Tutorial	Practical	Criteria	
Electromagnetic Theory	4	3	0	1	Appeared in Semester 4	
DSC - 13						

LEARNING OBJECTIVES

This core course develops further the concepts learnt in the electricity and magnetism course to understand the properties of electromagnetic waves in vacuum and different media.

LEARNING OUTCOMES

At the end of this course the student will be able to,

- Apply Maxwell's equations to deduce wave equation, electromagnetic field energy, momentum and angular momentum density
- Understand electromagnetic wave propagation in unbounded media: Vacuum, dielectric medium, conducting medium, plasma
- Understand electromagnetic wave propagation in bounded media: reflection and transmission coefficients at plane interface in bounded media
- Understand polarization of electromagnetic waves: Linear, circular and elliptical polarization. Production as well as detection of waves in laboratory
- Learn the features of planar optical wave guide
- In the laboratory course, the students will get an opportunity to perform experiments with polarimeter, Babinet compensator, ultrasonic grating and simple dipole antenna. Also, to study phenomena of interference, refraction, diffraction and polarization

<u>SYLLABUS OF DSC – 13</u>

THEORY COMPONENT

Unit - I

Review of Maxwell's equations; Coulomb gauge and Lorentz gauge; Poynting's theorem and Poynting's vector; electromagnetic (em) energy density; physical concept of electromagnetic field energy density

Unit – II

EM wave propagation in unbounded media: Plane em waves through vacuum and isotropic dielectric medium: transverse nature, refractive index, dielectric constant, wave impedance. Plane em waves through conducting medium: relaxation time, skin depth, attenuation

67

(6 Hours)

(10 Hours)

68

constant; Wave propagation through dilute plasma: electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth.

Unit – III

EM waves in bounded media: Boundary conditions at a plane interface between two media; reflection and refraction of plane em waves at plane interface between two dielectric media -Laws of reflection and refraction; Fresnel's formulae for perpendicular and parallel polarization, Brewster's law; reflection and transmission coefficients; total internal reflection, evanescent waves; metallic reflection (normal incidence)

Unit – IV

(13 Hours) Polarization of EM waves: Propagation of em waves in an anisotropic media; symmetric nature of dielectric tensor; Fresnel's formula; uniaxial and biaxial crystals; light propagation in uniaxial crystal; double refraction; polarization by double refraction; Nicol prism; ordinary and extraordinary refractive indices; production and detection of plane, circular and elliptically polarized light; phase retardation plates: quarter wave and half wave plates Optical rotation; Biot's laws for rotatory polarization; Fresnel's theory of optical rotation;

specific rotation

Unit – V

Wave guides: Planar optical wave guides; planar dielectric wave guide (-d/2 < x < d/2); condition of continuity at interface; phase shift on total reflection; Eigenvalue equations; phase and group velocity of guided waves; field energy and power transmission (TE mode only)

References:

Essential Readings:

- 1) Introduction to Electrodynamics, D. J. Griffiths, 3rd edition, 1998, Benjamin Cummings.
- 2) Electromagnetic Field and Waves, P. Lorrain and D. Corson, 2nd edition, 2003, CBS Publisher
- 3) Classical Electrodynamics, J. D. Jackson, 3rd edition, 2010, Wiley
- 4) Principle of Optics, M. Born and E. Wolf, 6th edition, 1980, Pergamon Press
- 5) Optics, A. Ghatak, 6th edition, 2017, McGraw-Hill Education, New Delhi

Additional Readings:

- 1) Electricity, Magnetism and Electromagnetic Theory, S. Mahajan, and S. R. Choudhary, 2017, TMH
- 2) Principles of Electromagnetic Theory, C. Jain, 2017, Narosa Publishing House
- 3) Elements of Electromagnetics, M. N. O. Sadiku, 2001, Oxford University Press.
- 4) Fundamentals of Electromagnetics, M. A. W. Miah, 1982, Tata McGraw Hill
- 5) Problems and solution in Electromagnetics, A. Ghatak, K. Thyagarajan and Ravi Varshney, 2015
- 6) Electromagnetic field Theory, R. S. Kshetrimayun, 2012, Cengage Learning
- 7) Engineering Electromagnetic, W. H. Hayt, 8th edition, 2012, McGraw Hill.
- 8) Electromagnetics, J. A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- 9) 2008+ Solved Problems in Electromagnetics, S. A. Nasar, 2001, SciTech

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

(9 Hours)

(7 Hours)

- Mandatory sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.
- Mandatory sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab.

At least six experiments to be performed from the following list

- 1) To verify the law of Malus for plane polarized light.
- 2) To determine the specific rotation of sugar solution using polarimeter.
- 3) To analyse elliptically polarized light by using a Babinet's compensator.
- 4) To study the elliptical polarized light using Fresnel rhomb.
- 5) To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
- 6) To study the reflection and refraction of microwaves
- 7) To study polarization and double slit interference in microwaves.
- 8) To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9) To determine the refractive index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10) To verify the Stefan's law of radiation and to determine Stefan's constant.
- 11) To determine Boltzmann constant using V-I characteristics of PN junction diode.
- 12) To find numerical aperture of an optical fibre.
- 13) To use a prism shaped double refracting crystal to determine the refractive indices of the quartz/ calcite corresponding to ordinary and extra-ordinary rays.
- 14) To measure birefringence of Mica
- 15) To determine the dielectric constant of solids using microwaves

References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House
- 2) Advanced level Physics Practicals, M. Nelson and J. M. Ogborn, 4th edition, reprinted 1985, Heinemann Educational Publisher
- 3) Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- 4) Practical Physics, G. L. Squires, 4th edition, 2015, Cambridge University Press
- 5) Engineering Practical Physics, S. Panigrahi and B. Mallick, 2015, Cengage Learning India Pvt. Ltd

DISCIPLINE SPECIFIC CORE COURSE – DSC - 14: QUANTUM MECHANICS – I

Course Title	Credits	Credi	t distributi course	ion of the	Eligibility	Pre-requisite of the
& Code		Lecture	Tutorial	Practical	Criteria	course
Quantum Mechanics – I DSC – 14	4	3	0	1	Appeared in Semester 4	Light and Matter, and Elements of Modern Physics papers of this course or their equivalent

LEARNING OBJECTIVES

The development of quantum mechanics has revolutionized the human life. In this course, the students will be exposed to the probabilistic concepts of basic non-relativistic quantum mechanics and its applications to understand the sub atomic world.

LEARNING OUTCOMES

After completing this course, the students will be able to,

- Understand the applications of the Schrodinger equation to different cases of potentials namely finite square potential well, harmonic oscillator potential.
- Solve the Schrodinger equation in 3-D.
- Understand the spectrum and eigen functions for hydrogen atom
- Understand the angular momentum operators in position space, their commutators, eigenvalues and eigen functions.
- In the laboratory course, the students will be able to use computational methods to
 - Solve Schrödinger equation for ground state energy and wave functions of various simple quantum mechanical one- dimensional potentials
 - Solve Schrödinger equation for ground state energy and radial wave functions of some central potentials.

SYLLABUS OF DSC - 14

THEORY COMPONENT

Unit – I

General discussion of bound states in an arbitrary potential: Continuity of wave function, boundary conditions and emergence of discrete energy levels. Application to energy eigen states for a particle in a finite square potential well, Momentum space wavefunction, Time evolution of Gaussian Wave packet, Superposition Principle, linearity of Schrodinger Equation, General solution as a linear combination of discrete stationary states, Observables as operators, Commutator of position and momentum operators, Ehrenfest's theorem.

Unit – II

Harmonic oscillator: Energy eigen values and eigen states of a 1-D harmonic oscillator using algebraic method (ladder operators) and using Hermite polynomials. Zero point energy and uncertainty principle.

Unit – III

(15 Hours)

(8 Hours)

(10 Hours)

Schrödinger Equation in three dimensions: Probability and probability densities in 3D. Schrödinger equation in spherical polar coordinates, its solution for Hydrogen atom solution using separation of angular and radial variables, Angular momentum operator, quantum numbers and spherical harmonics. Radial wave functions from Frobenius method; shapes of the probability densities for ground and first excited states; Orbital angular momentum quantum numbers I and m_I, s, p, d shells.

Unit – IV

(12 Hours)

Angular momentum: Commutation relations of angular momentum operators; concept of spin and total angular momentum; ladder operators, eigenvalues, eigenvectors; Pauli matrices; addition of angular momenta

References:

Essential Readings:

- 1) Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 6th edition, 2019, Laxmi Publications, New Delhi.
- 2) Introduction to Quantum Mechanics, D. J. Griffith, 2nd edition, 2005, Pearson Education.
- A Text book of Quantum Mechanics, P. M. Mathews and K. Venkatesan, 2nd edition, 2010, McGraw Hill.
- 4) Quantum Mechanics, B. H. Bransden and C. J. Joachain, 2nd edition, 2000, Prentice Hall
- 5) Quantum Mechanics: Concepts and Applications, 2nd edition, N. Zettili, A John Wiley and Sons, Ltd., Publication
- 6) Atomic Physics, S. N. Ghoshal, 2010, S. Chand and Company

Additional Readings:

- 1) Quantum Mechanics for Scientists & Engineers, D. A. B. Miller, 2008, Cambridge University Press.
- 2) Introduction to Quantum Mechanics, R. H. Dicke and J. P. Wittke, 1966, Addison-Wesley Publications
- 3) Quantum Mechanics, L. I. Schiff, 3rd edition, 2010, Tata McGraw Hill.
- 4) Quantum Mechanics, R. Eisberg and R. Resnick, 2nd edition, 2002, Wiley
- 5) Quantum Mechanics, B. C. Reed, 2008, Jones and Bartlett Learning.
- 6) Quantum Mechanics, W. Greiner, 4th edition, 2001, Springer.
- 7) Introductory Quantum Mechanics, R. L. Liboff, 4th edition, 2003, Addison Wesley

PRACTICAL COMPONENT

(15 Weeks with 2 hours of laboratory session per week)

At least 4 programs must be attempted. The implementation may be done in C++/Scilab /Python. Use of available library functions may be encouraged. Similar programs may be added.

<u>Unit 1</u>

- 1) Visualize the spherical harmonics by plotting the probability density for various values of the quantum numbers (l, m)
- 2) Use the analytical solution for a particle in finite potential well. Numerically solve the transcendental equation one gets after putting the continuity and boundary conditions to determine the energy eigenvalues for various values of the potential width and depth. Plot the corresponding normalised eigen functions.

<u>Unit 2</u>

Solve the Schrödinger equation using shooting/finite difference or any other method for the following simple 1-D potentials and compare with the analytical solutions:

- 1) Particle in a box
- 2) Particle in a finite potential well
- 3) Harmonic Potential

<u>Unit 3</u>

Solve the s-wave Schrodinger equation for the following cases.

$$\frac{d^2u}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2}[V(r) - E],$$

1) Ground state and the first excited state of the hydrogen atom:

$$V(r) = \frac{-e^2}{r}$$

Here *m* is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wave functions. Remember that the ground state energy of the hydrogen atom is ≈ -13.6 eV. Take e = 3.795 (eVÅ)^{1/2}, hc = 1973 (eVÅ) and m = 0.511x10⁶ eV/c².

2) For an atom in the screened coulamb potential

$$V(r) = \frac{-e^2}{r}e^{-r/a}$$

Here *m* is the reduced mass of the system (which can be chosen to be the mass of an electron). Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take $e = 3.795 (eVÅ)^{1/2}$, $m = 0.511 \times 10^6 eV/c^2$, and a = 3 Å, 5 Å, 7 Å. In these units $\hbar c = 1973 (eVÅ)$. The ground state energy is expected to be above -12 eV in all three cases.

<u>Unit 4</u>

Solve the s-wave Schrodinger equation $\frac{d^2u}{dr^2} = A(r)u(r), A(r) = \frac{2m}{\hbar^2}[V(r) - E]$, for a particle of mass *m* for the following cases

1)Anharmonic oscillator potential

$$V(r) = \frac{1}{2}kr^2 + \frac{1}{3}br^3$$

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose $m = 940 \text{ MeV/c}^2$, $k = 100 \text{ MeV} \text{ fm}^{-2}$, b = 0, 10, 30 MeV fm⁻³. In these units, $c\hbar = 197.3$ MeV fm. The ground state energy is expected to lie between 90 and 110 MeV for all three cases.

2) For the vibrations of hydrogen molecule with Morse potential

$$V(r) = D(e^{-2ar'} - e^{-ar'}), r' = \frac{r - r_0}{r}$$

Here *m* is the reduced mass of the two-atom system for the Morse potential Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take:
$$m = 940 \times 10^6 \text{ eV/c}^2$$
, $D = 0.755501 \text{ eV}$, $\alpha = 1.44$, $r_0 = 0.131349 \text{ Å}$

References for laboratory work:

1) Schaum's Outline of Programming with C++, J. Hubbard, 2000, McGraw-Hill Education.

- 2) C++ How to Program, P. J. Deitel and Harvey Deitel, 2016, Pearson
- 3) Scilab (A Free Software to Matlab): H. Ramchandran, A. S. Nair, 2011, S. Chand and Co
- 4) Documentation at the Python home page (https://docs.python.org/3/) and the tutorials there (https://docs.python.org/3/tutorial/).
- 5) Documentation of NumPy and Matplotlib: https://numpy.org/doc/stable/user/ and https://matplotlib.org/stable/tutorials/
- 6) Computational Physics, Darren Walker, 1st edition, 2015, Scientific International Pvt. Ltd
- 7) An Introduction to Computational Physics, T. Pang, 2010, Cambridge University Press
- 8) A Guide to MATLAB, B. R. Hunt, R. L. Lipsman, J. M. Rosenberg, 3rd edition, 2014, Cambridge University Press

DISCIPLINE SPECIFIC CORE COURSE – DSC - 15: DIGITAL ELECTRONICS

Course Title &	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of
Code		Lecture	ecture Tutorial Practical	Criteria	the course	
Digital Electronics	4	3	0	1	Appeared in Semester 4	
DSC - 15						

LEARNING OBJECTIVES

The objective of the course is to introduce digital electronics and its simple applications to physics Honours students. The course is designed to familiarize the students with the different number systems (binary, octal and hexadecimal), laws of Boolean algebra, logic gates and combinational and sequential logic circuits utilised in designing counters and registers.

LEARNING OUTCOMES

This paper is one of the core papers in the Physics curriculum. After studying this paper students will become familiar with,

- Digital signals, positive and negative logic, Boolean variables, truth table, various number system codes and their inter-conversions.
- Students will be able to learn to minimise a given Boolean function using laws of Boolean algebra and Karnaugh map to minimise the hardware requirement of digital logic circuits.
- Understand the working principle of data processing circuits, arithmetic circuits, sequential logic circuits, registers, counters based on flip flops

SYLLABUS OF DSC - 15

THEORY COMPONENT

Unit – I - Integrated circuits

Integrated Circuits (Qualitative treatment only), active and passive components, discrete components, wafer, chip, advantages and drawbacks of ICs, scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only), classification of ICs, examples of linear and digital ICs

Unit - II - Digital circuits and Boolean algebra

Difference between analog and digital circuits, binary number, decimal to binary and binary to decimal conversion, BCD, octal and hexadecimal numbers, AND, OR and NOT gates (realization using diodes and transistor), NAND and NOR gates as universal gates, XOR and XNOR gates and application as parity checkers

De Morgan's theorems, Boolean laws, simplification of logic circuit using Boolean algebra, fundamental products, idea of minterms and maxterms, conversion of truth table into

(2 Hours)

(14 Hours)

equivalent logic circuit by (1) Sum of Products method and (2) Karnaugh map simplification (upto four variables).

Unit – III - Combinational Logic Circuits

Data processing circuits: Multiplexers and its applications, de-multiplexers, decoders, encoders

Arithmetic logic circuits: Express binary number in signed and unsigned form, 1's and 2's complement representation, binary addition, binary subtraction using 2's complement, half and full Adders, half and full subtractors, 4-bit binary adder/subtractor using 2's complement method.

Unit – IV - Sequential Logic Circuits

Flip Flops SR, D, and JK clocked (level and edge triggered) flip-flops, preset and clear operations, race-around conditions in JK flip-flop, master-slave JK flip-flop, conversion of one flip flop to another using an excitation table

Unit - V - Application of Sequential Logic Circuits

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits).

Counters: Asynchronous counters, MOD-N synchronous counter designing using excitation table.

Unit – VI – Timers

IC 555: Pin -out diagram, block diagram and its applications as astable multivibrator and monostable multivibrator

References:

Essential Readings:

- 1) Digital Principles and Applications, A. P. Malvino, D. P. Leach and Saha, 7th edition, 2011, Tata McGraw
- 2) Fundamentals of Digital Circuits, A. Kumar, 2nd edition, 2009, PHI Learning Pvt. Ltd.
- 3) Digital Fundamentals, T. L. Floyd, 1994, Pearson Education Asia
- 4) Digital Principles and Applications, D. P. Leach and A. P. Malvino, 1995, Tata McGraw Hill
- 5) Digital Design, M. M. Mano and M. D. Ciletti, 2007, Pearson Education Asia
- 6) Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 7) Digital Electronics G. K. Kharate, 2010, Oxford University Press

Additional Readings:

- 1) Logic circuit design, S. P. Vingron, 2012, Springer
- 2) Digital Principles, R. L. Tokheim, 1994, Schaum's Outline Series, Tata McGraw-Hill
- 3) Solved Problems in Digital Electronics, S. P. Bali, 2005, Sigma Series, Tata McGraw-Hill
- 4) Digital Electronics: An Introduction To Theory And Practice, W. H. Gothmann, 2000, Prentice Hall of India
- 5) Modern Digital Electronics, R. P. Jain, 2003, Tata McGraw-Hill
- 6) Digital Electronics, S. Ghoshal, 2012, Cengage Learning
- 7) Digital Electronics, S. K. Mandal, 2010, 1st edition, McGraw Hill

PRACTICAL COMPONENT

(9 Hours)

(8 Hours)

(9 Hours)

(3 Hours)

(15 Weeks with 2 hours of laboratory session per week)

At least five experiments should be performed from the following list. All designing should be done on the bread boards.

- (a) To design a combinational logic system for a specified truth table.
 (b) To convert Boolean expression into logic circuit and design it using basic logic gate ICs
- 2) To minimize a given logic circuit using K-map and design using NAND gates.
- 3) Designing of Half Adder and Half Subtractor using NAND gates
- 4) Designing of 4-bit binary adder using adder IC.
- 5) To build Flip-Flop (RS, Clocked RS) circuits using NAND gates.
- 6) To build Flip-Flop (D-type and JK) circuits using NAND gate
- 7) To build a 3-bit Counter using D-type/JK Flip-Flop ICs and study timing diagrams.
- 8) To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 9) To design an astable multivibrator of given specifications using 555 Timer.

References for laboratory work:

- 1) Digital Fundamentals, T. L. Floyd, 1994, Pearson Education Asia
- 2) Digital Principles and Applications, D. P. Leach and A. P. Malvino, 1995, Tata McGraw Hill
- 3) Digital Design, M. M. Mano and M. D. Ciletti, 2007, Pearson Education Asia
- 4) Digital Circuits and Systems, Venugopal, 2011, Tata McGraw Hill

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 6: ASTRONOMY AND ASTROPHYSICS

Course Title &	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite of the course
Code	cicults	Lecture	Tutorial	Practical	Criteria	
Astronomy and Astrophysics	4	3	1	0	Appeared in Semester 4	
DSE-6						

LEARNING OBJECTIVES

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics. They will also be introduced to the Indian contribution to astronomy in the modern times, techniques to measure astronomical parameters, the different layers of the Sun and an overview of our Milky Way galaxy.

LEARNING OUTCOMES

After completing this course, student will gain an understanding of,

- Basic concepts of positional astronomy and astronomical coordinate systems
- Astronomical instruments and the modern telescopes
- Measurement of astronomical parameters such as distance, stellar brightness, stellar mass, radii, temperature and spectra
- The different layers of solar atmosphere and basic results of solar magnetohydrodynamics
- Basic structure of different galaxies and rotation of the Milky Way galaxy

It is advised that the tutorial sessions should involve discussion on problems meant to help students develop the ability to apply the theory they learn in lectures to diverse astrophysical phenomenon.

SYLLABUS OF DSE - 6

THEORY COMPONENT

Unit – I - Introduction to Astronomy

Overview of the night sky; diurnal and yearly motions of the Sun; basic concepts of positional astronomy: celestial sphere, astronomical coordinate systems (Horizon and Equatorial systems of coordinates), circumpolar stars

Unit – II - Basic Parameters of Stars

Measurement of astronomical distances (stellar parallax, aberration, proper motion), measurement of brightness, radiant flux and luminosity (apparent and absolute magnitude scales; distance modulus); determination of stellar mass (visual binaries, eclipsing binaries,

77

(12 Hours)

(12 Hours)

spectroscopic binaries); measurement of stellar temperature and radius; stellar spectra, dependence of spectral types on temperature; Stellar classification (Harvard classification scheme), H-R diagram

Unit – III - Sun

(9 Hours)

(12 Hours)

Solar parameters, Sun's internal structure, solar photosphere, solar atmosphere, corona, solar activity, basics of solar magneto-hydrodynamics

Unit – IV - Physics of galaxies

Nature of rotation of the Milky Way: Differential rotation of the Galaxy and Oort constants, rotation curve of the Galaxy and the dark matter, virial theorem

Cosmology: Standard Candles (Cepheids and SNe Type1a); cosmic distance ladder; expansion of the Universe, Cosmological principle, Newtonian cosmology and Friedmann models

References:

Essential Readings:

- 1) Fundamental Astronomy, H. Karttunen et al., Springer Berlin, Heidelberg
- 2) Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison-Wesley Publishing Co.
- 3) Introductory Astronomy and Astrophysics, M. Zeilik and S. A. Gregory, Saunders College Publishing.
- 4) Astronomy in India: A Historical Perspective, T. Padmanabhan, Springer
- 5) Foundation of Astrophysics, B. Ryden and B. M. Peterson, Cambridge University Press
- 6) Astronomy: A Physical Perspective, M. Kutner, Cambridge University Press

Additional Readings:

- 1) Seven Wonders of the Cosmos, J. V. Narlikar, Cambridge University Press
- 2) Explorations: Introduction to Astronomy, T. Arny and S. Schneider, McGraw Hill
- 3) Astrophysics Stars and Galaxies, K. D. Abhyankar, Universities Press
- 4) An introduction to astrophysics, B. Basu, Prentice Hall of India Private Limited.
- 5) The Physical Universe: An Introduction to Astronomy, F. H. Shu, University Science Books
- 6) Telescopes and techniques, C. R. Kitchin, Springer New York, NY
- 7) Fundamentals of solar astronomy, A. Bhatnagar and W. C. Livingston, World Scientific
- 8) Astrophysics for Physicists, A. R. Choudhuri, Cambridge University Press

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 7: PHYSICS OF MATERIALS

Course Title	Credits	Credit	t distributi course	ion of the	Eligibility	Pre-requisite
& Code		Lecture Tutorial Practical	Criteria	of the course		
Physics of Materials	4	2	0	2	Appeared in Semester 4	
DSE - 7						

LEARNING OBJECTIVES

This course intends to provide knowledge of emerging topics in condensed matter physics. In addition, this course aims to provide a general introduction to advanced topics by covering polymers, liquid crystals, carbon-based materials, and Diluted Magnetic Semiconductors. More importantly, the students will be exposed to different characterization techniques used in experimental condensed matter physics.

LEARNING OUTCOMES

After completion of this course the students should be able to,

- Identify different materials of technological importance in appliances and objects around us
- Explain the importance of concepts like density of states and its role in determining device characteristics
- Elucidate the ferroelectric, piezoelectric and pyroelectric materials and their applications.
- Explain the properties of liquid crystals and their application.
- Differentiate between different form of carbon based materials and their applications
- Introduce the importance of dilute magnetic semiconductors as a new technologically advance material for electronic devices
- Explain various characterization techniques used in understanding properties of different material

SYLLABUS OF DSE - 7

THEORY COMPONENT

Unit – I – Semiconductors

Basic concept of mobility and conductivity, density of states, determination of electron and hole concentration in doped semiconductor, Fermi level, Fermi energy, Fermi temperature, Fermi wavelength, Fermi surface.

Unit – II - Dielectric and magnetic materials

Dielectrics, Ferroelectric, Piezoelectric and Pyroelectric materials, applications of ferroelectrics in capacitors and memory device, Piezoelectrics in micro positioner and actuator, Pyroelectrics in radiation detectors and thermometry

Classification and applications of soft and hard magnetic materials, application in

(4 Hours)

(9 Hours)

transformers, memory device, introduction of spintronics based systems (spin transport)

Unit – III - Polymers

Chemical structure of polymers of few thermoplastic (polyethylene, PVC, PTFE, PMMA, Polyester, Nylons) and thermosetting (Epoxy resin) polymers, conducting polymersapplication in organic electronics

Unit – IV – Liquid crystals

Classification of liquid crystals, structural and orientational ordering (isotropic to Nematic), thermotropic liquid crystals, Phases and phase transitions; anisotropic; Birefringence and display devices

Unit – V – Carbon based materials

(3 Hours) Structure and properties of Fullerenes, C₆₀, single walled and multi walled CNTs, Graphene and their energy band diagram.

Unit – VI – Synthesis of materials

Ceramic (Calcination, Sintering, Grain), thin films (general idea of vacuum, thermal evaporation, molecular beam epitaxy, pulsed laser deposition), Crystals (qualitative idea of zone refining and Czochralski method), Polymers (Polymerization mechanism)

References:

Essential Readings:

- 1) Solid State Physics, M. A. Wahab, 2011, Narosa Publishing House
- 2) Elementary Solid State Physics, M. Ali Omar, 2006, Pearson
- 3) Semiconductor Devices: Physics and Technology, S. M. Sze, 2nd edition, 2002, Wiley India
- 4) Introduction to Polymer Physics, U. Eisele and S. D. Pask, 1990, Springer-Verlag
- 5) The physics of liquid crystals, Pierre-Gilles de Gennes, 2nd edition, 2003, Oxford University Press
- 6) Introduction to Liquid Crystals, P. J. Wojtowicz, E. Priestly and P. Sheng, 1975, Plenum Press
- 7) Dielectric Phenomenon in solids with Emphasis on Physical Concepts of Electronic Processes, K. C. Kao, Elsevier.
- 8) Physics of Ferroelectrics A Modern Perspective, K. M. Rabe Charles H. Ahn Jean-Marc Triscone, Springer
- 9) Carbon Nanotubes: Properties and Applications, M. J. O'Connell, 2006, CRC Press
- 10) Dilute Magnetic Semiconductors, M. Jain, World Scientific.

Additional Readings:

- 1) Encyclopaedia of materials characterization: surfaces, interfaces, thin films, R. C. Brundle et al., 1992, Butterworth-Heinemann
- 2) Physical Methods for Materials Characterization, P. E. J. Flewitt, R. K. Wild, (2nd Ed., CRC Press, 2015).
- 3) Dilute magnetic semiconducting materials, Br. R. Saravanan, MRF

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

(3 Hours)

(3 Hours)

(8 Hours)

At least six experiments to be performed from the following list

- 1) Study phase transition in a ferroelectric sample by measuring its dielectric constant as a function of frequency and temperature.
- 2) Study dielectric properties of given polymer sample as a function of frequency and temperature.
- 3) Study dielectric properties of given piezoelectric sample as a function of frequency and temperature.
- 4) Determine the coupling coefficient of a given piezoelectric crystal.
- 5) BH Hysteresis of different ferromagnetic materials (Loop Tracer).
- 6) Analyse the XRD spectra of a given ferroelectric ceramic sample and determine its lattice parameter.
- 7) Analyse the XRD spectra of a given ferromagnetic sample (basically ferrites, Fe₃O₄, CoFe₂O₃) and determine its lattice parameter.
- 8) Analyse the XRD spectra of a given compound semiconductor (ZnO, TiO₂, etc) thin film/ceramic sample and determine its lattice parameter.
- 9) Analyse the UV-Vis spectra of a given wide band gap semiconductor and determine its bandgap.
- 10) Study the IV characteristics of a polymer material by depositing/painting Aluminum electrodes.
- 11) To determine the g-factor of a sample by ESR Spectrometer.
- 12) Analyse the given SEM/TEM/AFM micrographs of the deposited thin film or nanostructure of any material and determine surface roughness, crystallinity, particle size etc.
- 13) Deposition of any kind of thin film by any technique available in the lab.
- 14) Liquid crystals (reading project)

References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal
- 3) Elements of Solid State Physics, J. P. Srivastava, 2nd edition, 2006, Prentice-Hall of India
- 4) Elements of X-Ray Diffraction, B. D. Cullity and S. R. Stock
- 5) Physical Methods for Materials Characterization, P. E. J. Flewitt, R. K. Wild, 2nd edition, 2015, CRC Press
- 6) Encyclopedia of materials characterization: surfaces, interfaces, thin films, R. C. Brundle et al., 1992, Butterworth-Heinemann

DISCIPLINE SPECIFIC ELECTIVE COURSE – DSE 8: COMMUNICATION SYSTEM

Course Title &	Credits	Credit	t distributi course	on of the	Eligibility	Pre-requisite of the course
Code		Lecture	Tutorial	Practical	Criteria	
Communication System	4	2	0	2	Appeared in Semester 4	
DSE - 8						

LEARNING OBJECTIVES

This paper aims to describe the fundamental concepts of communication systems and communication techniques based on Analog Modulation, Analog and digital Pulse Modulation. Communication and Navigation systems such as GPS and mobile telephony system are also introduced. This paper will essentially connect the text book knowledge with the most popular communication technology in real world.

LEARNING OUTCOMES

At the end of this course, students will be able to,

- Understand fundamentals of electronic communication system and electromagnetic communication spectrum with an idea of frequency allocation for radio communication system in India.
- Gain an insight on the use of different modulation and demodulation techniques used in analog communication
- Learn the generation and detection of a signal through pulse and digital modulation techniques and multiplexing.
- Gain an in-depth understanding of different concepts used in a satellite communication system.
- Study the concept of Mobile radio propagation, cellular system design and understand mobile technologies like GSM and CDMA.
- In the laboratory course, students will apply the theoretical concepts to gain hands-on experience in building modulation and demodulation circuits; Transmitters and Receivers for AM and FM. Also to construct TDM, PAM, PWM, PPM and ASK, PSK and FSK modulator and verify their results.

SYLLABUS OF DSE - 8

THEORY COMPONENT

Unit – I - Electronic communication and analog modulation

(8 Hours)

Electronic communication: Introduction to communication – means and modes. Need for modulation. Block diagram of an electronic communication system, channels and base-band signals

Analog Modulation: Amplitude modulation, modulation index and frequency spectrum. Generation of AM (emitter modulation), amplitude demodulation (diode detector), Single sideband (SSB) systems, advantages of SSB transmission, frequency modulation (FM) and phase modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM.

Unit – II - Analog Pulse Modulation

Sampling theorem, basic principles - PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing (time division multiplexing and frequency division multiplexing)

Unit – III - Digital Pulse Modulation

Need for digital transmission, pulse code modulation, digital carrier modulation techniques, sampling, quantization and encoding, concept of amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK), and binary phase shift keying (BPSK)

Unit – IV - Satellite Communication and Mobile Telephony system (8 Hours)

Satellite communication: Need for satellite communication, geosynchronous satellite orbits, geostationary satellite advantages of geostationary satellites. Transponders (C - Band), uplink and downlink, Ground and earth stations

Mobile Telephony System: Concept of cell sectoring and cell splitting, SIM number, IMEI number, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset.

References:

Essential Readings:

- 1) Electronic Communications, D. Roddy and J. Coolen, Pearson Education India.
- 2) Advanced Electronics Communication Systems, Tomasi, 6th edition, Prentice Hall.
- 3) Electronic Communication systems, G. Kennedy, 3rd edition, 1999, Tata McGraw Hill.
- 4) Principles of Electronic communication systems, Frenzel, 3rd edition, McGraw Hill
- 5) Modern Digital and Analog Communication Systems, B. P. Lathi, 4th edition, 2011, Oxford University Press.
- 6) Communication Systems, S. Haykin, 2006, Wiley India
- 7) Wireless communications, A. Goldsmith, 2015, Cambridge University Press

Additional Readings:

- 1) Electronic Communication, L. Temes and M. Schultz, Schaum's Outline Series, Tata McGraw-Hill.
- 2) Electronic Communication Systems, G. Kennedy and B. Davis, Tata McGraw-Hill
- 3) Analog and Digital Communication Systems, M. J. Roden, Prentice Hall of India

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) To design an amplitude modulator using transistor
- 2) To design envelope detector for demodulation of AM signal
- 3) To study FM generator and detector circuit
- 4) To study AM transmitter and receiver
- 5) To study FM transmitter and receiver

(10 Hours)

(4 Hours)

- 6) To study time division multiplexing (TDM)
- 7) To design pulse amplitude modulator using transistor.
- 8) To design pulse width modulator using 555 timer IC.
- 9) To design pulse position modulator using 555 timer IC
- 10) To study ASK, PSK and FSK modulators and demodulators

References for laboratory work:

- Electronic Communication system, Blake, 5th edition, Cengage
 Introduction to Communication systems, U. Madhow, 1st edition, 2018, Cambridge University Press

Category II

Physical Science Courses with Physics discipline as one of the Core Disciplines

(B. Sc. Physical Science with Physics as Major discipline)

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 5: ELEMENTS OF MODERN PHYSICS

Course Title &	Credits	Credit	distributi course	on of the	Eligibility Criteria	Pre-requisite of the course
Code	cicuits	Lecture	Tutorial	Practical		
Elements of Modern Physics	4	2	0	2	Appeared in Semester 4	
PHYSICS DSC – 5						

LEARNING OBJECTIVES

This course introduces modern development in Physics. Starting from Planck's law, it develops the idea of probability interpretation and then discusses the formulation of Schrodinger equation. This paper aims to provide knowledge about atomic physics, hydrogen atoms and X-rays. It also introduces concepts of nuclear physics and accelerators

LEARNING OUTCOMES

After getting exposure to this course, the following topics would be learnt.

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics. Heisenberg's Uncertainty principle and its applications, photoelectric effect and Compton scattering
- The Schrodinger equation in 1-d, wave function, probability and probability current densities, normalization, conditions for physical acceptability of wave functions, position and momentum operators and their expectation values. Commutator of position and momentum operators.
- Time Independent Schrodinger Equation, derivation by separation of variables, wave packets, particle in a box problem, energy levels.
- Modification in Bohr's Quantum Model: Sommerfeld theory of elliptical orbits
- Hydrogen atom energy levels and spectra emission and absorption spectra.
- X-rays: their production and spectra: continuous and characteristic X-rays, Moseley Law.
- Basic Properties of Nuclei, nuclear binding energy, semi-empirical mass formula, nuclear force and meson theory.
- Types of Accelerators, Van de Graaff generator, linear accelerator, cyclotron, synchrotron

SYLLABUS OF PHYSICS DSC – 5

THEORY COMPONENT

Unit - I

Origin of Quantum Theory: Black Body Radiation and failure of classical theory, Planck's Quantum Hypothesis, Planck's Radiation Law, Quantitative treatment of Photo-electric effect and Compton scattering. Wave properties of particles: de Broglie hypothesis, Group and Phase velocities and relation between them. Heisenberg's Uncertainty Principle, Gamma ray microscope thought experiment, Position-Momentum Uncertainty, consequences of uncertainty principle.

(8 Hours)

Unit - II

The Schrodinger Equation: The Schrodinger equation in 1-d, statistical interpretation of wave function, probability and probability current densities. Normalization, conditions for physical acceptability of wave functions with examples, position and momentum operators and their expectation values; Commutator of position and momentum operators

Unit – III

Time Independent Schrodinger Equation: Demonstration of separation of variable method for time independent Schrodinger equation: Free particle wave function, wave packets, application to energy eigen values and stationary states for particle in a box problem, energy levels.

Unit – IV

Atomic Physics: Beyond the Bohr's Quantum model: Sommerfeld theory of elliptical orbits; hydrogen atom energy levels and spectra emission and absorption spectra

Correspondence principle

X-rays: Method of production, X-ray spectra: Continuous and characteristic X-rays, Moseley Law.

Unit – V

Basic Properties of Nuclei: Introduction (basic idea about nuclear size, mass, angular momentum, spin), semi-empirical mass formula, nuclear force and meson theory.

Accelerators: Accelerator facility available in India: Van de Graaff generator, linear accelerator, cyclotron (principle, construction, working, advantages and disadvantages), discovery of new elements of the periodic table

References:

Essential Readings:

- 1) Concepts of Modern Physics, A. Beiser, 2002, McGraw-Hill.
- 2) Modern Physics, R. A. Serway, C. J. Moses and C. A. Moyer, 2012, Thomson Brooks Cole, Cengage
- 3) Schaum's Outline of Modern Physics, R. Gautreau and W. Savin, 2020, McGraw Hill LLC
- 4) Modern Physics for Scientists and Engineers, S. T. Thornton Rex, 4th edition, 2013, Cengage Learning
- 5) Introduction to Modern Physics, R. Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- 6) Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010.
- 7) Learning Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill.
- 8) Modern Physics, R. Murugeshan, S Chand & Co. Ltd
- 9) Schaum's Outline of Beginning Physics II | Waves, electromagnetism, Optics and Modern Physics, Alvin Halpern, Erich Erlbach, McGraw Hill.
- 10) Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd edition, Tata McGraw-Hill Publishing Co. Ltd.
- 11) Quantum Physics, Berkeley Physics, Vol.4. E. H. Wichman, 1971, Tata McGraw-Hill
- 12) Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 2004, Macmillan Publishers India Limited
- 13) Introduction to Quantum Mechanics, D. J. Griffith, 2005, Pearson Education
- 14) Concepts of nuclear physics, B. Cohen, 2003, McGraw-Hill Education
- 15) Atomic Physics, Ghoshal, 2019, S. Chand Publishing House

(5 Hours)

(5 Hours)

(5 Hours)

(7 Hours)

- 16) Atomic Physics, J. B. Rajam & foreword by Louis De Broglie, 2010, S. Chand & Co.
- 17) Nuclear Physics, S. N. Ghoshal, S. Chand Publishers
- 18) Atomic and Molecular Physics, Rajkumar, RBSA Publishers

Additional Readings:

- 1) Six Ideas that Shaped Physics: Particles Behave like Waves, T. A. Moore, 2003, McGraw Hill.
- 2) Thirty years that shook physics: The story of quantum theory, G. Gamow, Garden City, NY: Doubleday, 1966.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Mandatory activity:

- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab
- Familiarization with Schuster's focusing; determination of angle of prism.

At least six experiments to be performed from the following list

- 1) Measurement of Planck's constant using black body radiation and photo-detector
- 2) Photo-electric effect: photo current versus intensity and wavelength of light, maximum energy of photo-electrons versus frequency of light
- 3) To determine the work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs of at least 4 different colours.
- 5) To determine the wavelength of the H-alpha emission line of Hydrogen atoms.
- 6) To determine the ionization potential of mercury.
- 7) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 8) To show the tunneling effect in tunnel diodes using I-V characteristics.
- 9) To determine the wavelength of a laser source using diffraction of a single slit.
- 10) 10. To determine the wavelength of a laser source using diffraction of double slits.
- 11) 11. To determine angular spread of He-Ne laser using plane diffraction grating
- 12) One innovative experiment designed by the teacher relevant to the syllabus.

References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal.
- 3) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th edition, reprinted, 1985, Heinemann Educational Publishers.
- 4) A Laboratory Manual of Physics for Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publisher.
- 5) B.Sc. Practical Physics, H. Singh, S Chand & Co Ltd
- 6) B.Sc. Practical Physics, G. Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 15a: FOUNDATION OF ASTROPHYSICS

Course Title &	Credits	Credit distribution of the course		Eligibility	Pre-requisite of	
Code		Lecture	Tutorial	Practical	Criteria	the course
Foundation of Astrophysics	4	3	1	0	Appeared in	
PHYSICS DSE 15a					Semester 4	

LEARNING OBJECTIVES

This course is meant to introduce undergraduate students to the wonders of the Universe. Students will understand how astronomers over millennia have come to understand mysteries of the universe using laws of geometry and physics. They will also be introduced to the Indian contribution to astronomy in the modern times, techniques to measure astronomical parameters, the different layers of the Sun, the characteristics of planets in the solar system, an overview of our Milky Way galaxy and astrobiology.

LEARNING OUTCOMES

After completing this course, student will gain an understanding of,

- Basic concepts of positional astronomy and astronomical coordinate systems
- Astronomical instruments and modern telescopes
- Measurement of basic astronomical parameters such as distance, stellar brightness, stellar mass, radii, temperature and spectra
- Different layers of the Sun's atmosphere
- The difference between the terrestrial planets and the Jovian planets
- Basic structure of different galaxies and rotation of the Milky Way galaxy
- Distribution of chemical compounds in the interstellar medium and astrophysical conditions necessary for the emergence and existence of life

It is advised that the tutorial sessions should involve discussion on problems meant to help students develop the ability to apply the theory they learn in lectures to diverse astrophysical phenomenon.

SYLLABUS OF PHYSICS DSE – 15a

THEORY COMPONENT

Unit – I - Introduction to Astronomy

Overview of the night sky; diurnal and yearly motions of the Sun; basic concepts of positional astronomy: celestial sphere, astronomical coordinate systems (Horizon and Equatorial systems of coordinates), circumpolar stars

Unit – II - Basic Parameters of Stars

(15 Hours)

(12 Hours)

Measurement of astronomical distances (stellar parallax, aberration, proper motion), measurement of brightness, radiant flux and luminosity (apparent and absolute magnitude scales; distance modulus); determination of stellar mass by Kepler's law; measurement of stellar temperature and radius; stellar spectra, dependence of spectral types on temperature; Stellar classification (Harvard classification scheme), H-R diagram

Unit – III - Sun and the solar system

Solar parameters; Sun's internal structure; solar photosphere; solar atmosphere; chromosphere; corona; solar activity; solar system (characteristics of terrestrial and Jovian planets)

Unit – IV- Physics of galaxies, Cosmology, Astrobiology

Physics of galaxies: Nature of rotation of the Milky Way: Differential rotation of the Galaxy, dark matter

Cosmology: Standard Candles (Cepheids and SNe Type1a); cosmic distance ladder; expansion of the Universe

Astrobiology: History of the Universe; chemistry of life; origin of life; chances of life in the solar system

References:

Essential Readings:

- 1) Seven Wonders of the Cosmos, J. V. Narlikar, Cambridge University Press
- 2) Fundamental Astronomy, H. Karttunen et al., Springer Berlin, Heidelberg
- 3) Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison-Wesley Publishing Co.
- 4) Introductory Astronomy and Astrophysics, M. Zeilik and S. A. Gregory, Saunders College Publishing.
- 5) Astronomy in India: A Historical Perspective, T. Padmanabhan, Springer
- 6) Foundation of Astrophysics, B. Ryden and B. M. Peterson, Cambridge University Press
- 7) Astronomy: A Physical Perspective, M. Kutner, Cambridge University Press

Additional Readings:

- 1) Explorations: Introduction to Astronomy, Thomos Arny and Stephen Schneider, McGraw Hill
- 2) Astrophysics Stars and Galaxies, K. D. Abhyankar, Universities Press
- 3) An introduction to astrophysics, B. Basu, Prentice Hall of India Private Limited.
- 4) The Physical Universe: An Introduction to Astronomy, F. H. Shu, University Science Books
- 5) Telescopes and techniques, C. R. Kitchin, Springer New York, NY
- 6) Fundamentals of solar astronomy, A. Bhatnagar and W. C. Livingston, World Scientific
- 7) Astrophysics for Physicists, A. R. Choudhuri, Cambridge University Press

(9 Hours)

(9 Hours)

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 15b: DIGITAL ELECTRONICS

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical	Criteria	of the course	
Digital Electronics PHYSICS DSE – 15b	4	2	0	2	Appeared in Semester 4		

LEARNING OBJECTIVES

The objective of the course is to introduce digital electronics and its simple applications to physics program students. The course is designed to familiarize the students with the different number systems (binary, octal and hexadecimal), laws of Boolean algebra, logic gates and combinational and sequential logic circuits utilised in designing counters and registers.

LEARNING OUTCOMES

After studying this paper students will become familiar with,

- Digital signals, positive and negative logic, Boolean variables, truth table, various number system codes and their inter-conversions.
- Students will be able to learn to minimise a given Boolean function using laws of Boolean algebra and Karnaugh map to minimise the hardware requirement of digital logic circuits
- Understand the working mechanism of data processing circuits, arithmetic circuits, sequential logic circuits, register and their applications.

SYLLABUS OF PHYSICS DSE 15b

THEORY COMPONENT

Unit – I - Integrated Circuits (qualitative treatment only)

Advantages and drawbacks of ICs, scale of integration, SSI, MSI, LSI and VLSI (basic idea and definitions only), classification of ICs, examples of linear and digital ICs

Unit - II - Digital circuits and Boolean Aalgebra

Binary numbers, decimal to binary and binary to decimal conversion, octal and hexadecimal numbers, NAND and NOR gates as universal gates, XOR and XNOR gates and their application as parity checkers

Boolean algebra: De Morgan's theorems, Boolean laws, idea of minterms, simplification of logic circuit using Boolean algebra and Karnaugh map

Unit – III - Combinational logic Circuits

Data processing circuits: Multiplexers and its applications, de-multiplexers, decoders, encoders

Arithmetic circuits: Binary addition, binary subtraction using 2's complement, half and full adders, half and full subtractor

(13 Hours)

(7 Hours)

(2 Hours)

91

Unit – IV - Sequential Circuits

(8 Hours)

Flip Flops: SR, D, and JK, clocked (edge triggered) flip-flops, race-around conditions in JK flip-flop, application of flip flops in designing shift register (serial -in- parallel out) and 2- bit (MOD-4) up-down asynchronous counter

References:

Essential Readings:

- 1) Digital Principles and Applications, A. P. Malvino, D. P. Leach and Saha, 7th edition, 2011, Tata McGraw
- 2) Fundamentals of Digital Circuits, A. Kumar, 2nd edition, 2009, PHI Learning Pvt. Ltd.
- 3) Digital Fundamentals, T. L. Floyd, 1994, Pearson Education Asia
- 4) Digital Principles and Applications, D. P. Leach and A. P. Malvino, 1995, Tata McGraw Hill
- 5) Digital Design, M. M. Mano and M. D. Ciletti, 2007, Pearson Education Asia
- 6) Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- 7) Digital Electronics, G. K. Kharate, 2010, Oxford University Press

Additional Readings:

- 1) Logic circuit design, S. P. Vingron, 2012, Springer
- 2) Digital Principles, Schaum's Outline Series, R. L. Tokheim, 1994, Tata McGraw-Hill
- 3) Solved Problems in Digital Electronics, S. P. Bali, 2005, Sigma Series, Tata McGraw-Hill
- 4) Digital Electronics: An Introduction To Theory And Practice, W. H. Gothmann, 2000, Prentice Hall of India
- 5) Modern Digital Electronics, R. P. Jain, 2003, Tata McGraw-Hill
- 6) Digital Electronics, S. Ghoshal, 2012, Cengage Learning.
- 7) Digital Electronics, S. K. Mandal, 2010, 1st edition, McGraw Hill

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Either (1) At least 6 experiments or (2) 4 experiments and one project equivalent to two experiments and all designing should be done on the bread boards.

- 1) Study of truth tables of basic logic gates, universal logic gates XOR and XNOR logic gates
- 2) (a)To design a combinational logic system for a specified truth table.
 (b) To convert Boolean expression into logic circuit and design it using basic logic gate ICs
- 3) To minimize a given logic circuit using K-map and design using NAND gates.
- 4) Designing of Half Adder and Half Subtractor using NAND gates.
- 5) Designing of Full adder/Full Subtractor using NAND gates
- 6) Designing of 4-bit binary adder using adder IC.
- 7) To build Flip-Flop (RS, Clocked RS) circuits using NAND gates.
- 8) To build Flip-Flop (D-type and JK) circuits using NAND gate
- 9) To build a 2-bit Asynchronous Counter using D-type/JK Flip-Flop ICs and study timing diagrams.
- 10) To make a 3-bit Shift Register (serial in- and parallel out) using D-type/JK Flip-Flop ICs.

References for laboratory work:

- 1) Digital Fundamentals, T. L. Floyd, 1994, Pearson Education Asia
- 2) Digital Principles and Applications, D. P. Leach and A. P. Malvino, 1995, Tata McGraw Hill
- 3) Digital Design, M. M. Mano and M. D. Ciletti, 2007, Pearson Education Asia
- 4) Digital Circuits and Systems, Venugopal, 2011, Tata McGraw Hill.

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 15c: RADIATION AND ITS APPLICATIONS

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical	Criteria	of the course	
Radiation and its Applications	4	2	0	2	Appeared in Semester 4		
PHYSICS DSE – 15c							

LEARNING OBJECTIVES

The Learning Objectives of this course are as follows.

- To focus on the applications of nuclear techniques and radiation protection.
- To not only enhance the skills towards the basic understanding of the radiation but also provide the knowledge about the protective measures against radiation exposure.
- To impart all the skills required by a radiation safety officer or any job dealing with radiation such as X-ray operators, jobs dealing with nuclear medicine: chemotherapists, operators of PET, MRI, CT scan, gamma camera etc.

LEARNING OUTCOMES

After studying this course, the student will be able to,

- Understand and use the applications of nuclear techniques and radiation protection to guard against nuclear radiation hazards.
- Understand and use the units of radiations and their safety limits, the devices to detect and measure radiation.
- Understand and use radiation safety management, biological effects of ionizing radiation, operational limits and basics of radiation hazards evaluation and control, radiation protection standards,
- Use the devices which apply radiations in medical sciences, such as X ray, MRI, PET, CT-scan with the required safety measures.
- Understand and perform experiments like study the background radiation levels using Radiation detectors, Determination of gamma ray linear and mass absorption coefficient of a given material for radiation shielding application.
- Use graphical software to plot the simulations done through SRIM or similar software.

SYLLABUS OF PHYSICS DSE 15c

THEORY COMPONENT

Unit – I

(8 Hours)

Radiation and its interaction with matter: Basic ideas of different type of radiation electromagnetic (X-ray, gamma rays, cosmic rays etc.), nuclear radiation and their origin (stable and unstable isotopes), half life and mean life

Nuclear Radiation: Basic idea of alpha, beta, gamma and neutron radiation and their sources (sealed and unsealed sources). Kinematics of nuclear reactions, Q value

Interaction of charged particles (including alpha particles): Heavy charged particles (e.g.

accelerated ions) - Beth-Bloch formula, scaling laws, mass stopping power, range, straggling. Cherenkov radiation

Interaction of beta particles: Collision and Radiation loss (Bremsstrahlung).

Interaction of photons: Linear and Mass Attenuation Coefficients. Interaction of Neutrons: Collision, slowing down and Moderation.

Unit - II

Radiation Units, dosage and safety management:

Radiation Quantities and Units: Biological effects of ionizing radiation, Interaction of ionising and non-ionising radiation at the cellular level. Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, quality factor, radiation and tissue weighting factors, annual limit of intake (ALI) and derived air concentration (DAC).

Radiation safety management: Operational limits and basics of radiation hazards, its evaluation and control: radiation protection standards. Concept of ALARA Principle using Distance, time and shielding

Unit - III

(8 Hours) Radiation detection and monitoring devices: Basic concepts and working principle of gas detectors, Scintillation Detectors, Solid State Detectors and Neutron Detectors, Types of Radiation Dosimeters: thermoluminescence, radiographic films, calorimetry, semiconductor diodes; Relation between detection and dosimetry, Interaction of ionising and non-ionising radiation at the cellular level.

Unit - IV

Application of radiation as a technique: Application in medical science (e.g., basic principles of X- rays, MRI, PET, CT scan, Projection Imaging Gamma Camera, Radiation therapy), Archaeology, Art, Crime detection, Mining and oil. Industrial Uses: Tracing, Gauging, Material Modification, Sterilization, Food preservation.

References:

Essential Readings:

- 1) Basic ideas and concepts in Nuclear Physics: An introductory approach, K. Heyde, 3rd edition, 1999, IOP Publication.
- 2) Nuclear Physics, S. N. Ghoshal, 1st edition, 2010, S. Chand Publication
- 3) Nuclear Physics: Principles and Applications, J. Lilley, 2006, Wiley Publication
- 4) Fundamental Physics of Radiology, W. J. Meredith and B. Massey, 1989, John Wright and Sons, UK
- 5) An Introduction to Radiation Protection by A Martin and S A Harbisor, John Willey & Sons, Inc. NewYork, 1981.
- 6) Radioactivity and Radiation, C. Grupen and M. Rodgers, 2016, Springer
- 7) Introduction to Radiation Protection, C. Grupen, 2010, Springer
- 8) An introduction to radiation protection, A. Martin, S. Harbison, K. Beach and P. Cole, H. Arnold, 2012.

Additional Readings:

- 1) Radiation detection and measurement, G. F. Knoll, 4th edition, 2010, Wiley Publications
- 2) Techniques for Nuclear and Particle Physics experiments, W. R. Leo, 1994, Springer
- 3) Thermoluminescence dosimetry, A. F. Mcknlay, Bristol, Adam Hilger (Medical Physics Hand book 5)

(8 Hours)

(6 Hours)

- 4) Medical Radiation Physics, W. R. Hendee, 1981, Year book Medical Publishers, Inc., London
- 5) Physics and Engineering of Radiation Detection, S. N. Ahmed, 2007, Academic Press Elsevier
- 6) Nuclear and Particle Physics, W. E. Burcham and M. Jobes, 1995, Harlow Longman Group
- IAEA Publications: (a) General safety requirements Part 1, No. GSR Part 1 (2010), Part 3 No. GSR Part 3 (Interium) (2010); (b) Safety Standards Series No. RS-G-1.5 (2002), Rs-G-1.9 (2005), Safety Series No. 120 (1996); (c) Safety Guide GS-G-2.1 (2007).

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least five experiments need to be performed from the following list.

- Estimate the energy loss of different projectiles/ions (at least 3 projectiles between ZP = 1 to 92, where ZP is atomic number of projectile/ion) in water and carbon, using SRIM/TRIM etc. simulation software.
- 2) Simulation study (using SRIM/TRIM or any other software) of radiation depth in materials (Carbon, Silver, Gold, Lead) using H as projectile/ion.
- Comparison of interaction of projectiles with ZP = 1 to 92 (where ZP is atomic number of projectile/ion) in a given medium (Mylar, Aluminium, cadmium, lead) using simulation software (SRIM etc).
- 4) SRIM/TRIM based experiments to study ion-matter interaction of heavy projectiles on heavy atoms. The range of investigations will be ZP = 6 to 92 on ZA = 16 to 92 (where ZP and ZA are atomic numbers of projectile and atoms respectively). Draw and infer appropriate Bragg Curves.
- 5) Calculation of absorption/transmission of X-rays, γ-rays through Mylar, Be, C, Al, Fe and ZA = 47 to 92 (where ZA is atomic number of atoms to be investigated as targets) using XCOM, NIST (https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html).
- 6) Study the background radiation in different places and identify the source material from gamma ray energy spectrum. (Data may be taken from the Department of Physics & Astrophysics; University of Delhi and gamma ray energies are available in the website http://www.nndc.bnl.gov/nudat2/).
- 7) Study the background radiation levels using Radiation meter
- 8) Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
- 9) Study of counting statistics using background radiation using GM counter.
- 10) Study of radiation in various materials (e.g. KSO₄ etc.). Investigation of possible radiation in different routine materials by operating GM counter at operating voltage.
- 11) Study of absorption of beta particles in Aluminium using GM counter.
- 12) Detection of α particles using reference source & determining its half life using spark counter.
- 13) Gamma spectrum of Gas Light mantle (Source of Thorium).
- 14) Demonstration of Radiation Detection equipment for dose, risk and crime scene management.
- 1) Schaum's Outline of Modern Physics, 1999, McGraw-Hill
- 2) Schaum's Outline of College Physics, E. Hecht, 11th edition, 2009, McGraw Hill
- 3) Modern Physics, K Sivaprasath and R Murugeshan, 2010, S. Chand Publication
- 4) AERB Safety Guide (Guide No. AERB/RF-RS/SG-1), Security of radioactive sources in radiation facilities, 2011
- 5) AERB Safety Standard No. AERB/SS/3 (Rev. 1), Testing and Classification of sealed Radioactivity Sources., 2007.

Category II

Physical Science Courses (with Electronics) with Physics and Electronics discipline as Core Disciplines

DISCIPLINE SPECIFIC CORE COURSE – PHYSICS DSC 9: ELEMENTS OF MODERN PHYSICS

Course Title & Code	Credits	Credit	t distributi course	ion of the	Eligibility Criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical		
Elements of Modern Physics	4	2	0	2	Appeared in Semester 4	
PHYSICS DSC 9						

LEARNING OBJECTIVES

This course introduces modern development in Physics. Starting from Planck's law, it develops the idea of probability interpretation and then discusses the formulation of Schrodinger equation. This paper aims to provide knowledge about atomic physics, hydrogen atoms and X-rays. It also introduces concepts of nuclear physics and accelerators

LEARNING OUTCOMES

After getting exposure to this course, the following topics would be learnt.

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics. Heisenberg's Uncertainty principle and its applications, photoelectric effect and Compton scattering
- The Schrodinger equation in 1-d, wave function, probability and probability current densities, normalization, conditions for physical acceptability of wave functions, position and momentum operators and their expectation values; Commutator of position and momentum operators.
- Time Independent Schrodinger Equation, derivation by separation of variables, wave packets, particle in a box problem, energy levels.
- Modification in Bohr's Quantum Model: Sommerfeld theory of elliptical orbits
- Hydrogen atom energy levels and spectra emission and absorption spectra.
- X-rays: their production and spectra: continuous and characteristic X-rays, Moseley Law.
- Basic Properties of Nuclei, nuclear binding energy, semi-empirical mass formula, nuclear force and meson theory.
- Types of Accelerators, Van de Graaff generator, linear accelerator, cyclotron, synchrotron

<u>SYLLABUS OF PHYSICS DSC – 9</u>

THEORY COMPONENT

Unit - I

Origin of Quantum Theory: Black Body Radiation and failure of classical theory, Planck's Quantum Hypothesis, Planck's Radiation Law, Quantitative treatment of Photo-electric effect and Compton scattering. Wave properties of particles: de Broglie hypothesis, Group and Phase velocities and relation between them. Heisenberg's Uncertainty Principle, Gamma ray microscope thought experiment, Position-Momentum Uncertainty, consequences of uncertainty principle.

(8 Hours)

Unit - II

The Schrodinger Equation: The Schrodinger equation in 1-d, statistical interpretation of wave function, probability and probability current densities. Normalization, conditions for physical acceptability of wave functions with examples, position and momentum operators and their expectation values; Commutator of position and momentum operators.

Unit – III

Time Independent Schrodinger Equation: Demonstration of separation of variable method for time independent Schrodinger equation: Free particle wave function, wave packets, application to energy eigen values and stationary states for particle in a box problem, energy levels.

Unit – IV

Atomic Physics: Beyond the Bohr's Quantum Model: Sommerfeld theory of elliptical orbits; hydrogen atom energy levels and spectra emission and absorption spectra.

Correspondence principle

X-rays: Method of production, X-ray spectra: Continuous and characteristic X-rays, Moseley law

Unit – V

Basic Properties of Nuclei: Introduction (basic idea about nuclear size, mass, angular momentum, spin), semi-empirical mass formula, nuclear force and meson theory.

Accelerators: Accelerator facility available in India: Van de Graaff generator, linear accelerator, cyclotron (principle, construction, working, advantages and disadvantages); discovery of new elements of the periodic table

References:

Essential Readings:

- 1) Concepts of Modern Physics, A. Beiser, 2002, McGraw-Hill.
- 2) Modern Physics, R. A. Serway, C. J. Moses and C. A. Moyer, 2012, Thomson Brooks Cole, Cengage
- 3) Schaum's Outline of Modern Physics, R. Gautreau and W. Savin, 2020, McGraw Hill LLC
- 4) Modern Physics for Scientists and Engineers, S. T. Thornton Rex, 4th edition, 2013, Cengage Learning
- 5) Introduction to Modern Physics, R. Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- 6) Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010.
- 7) Learning Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill.
- 8) Modern Physics, R. Murugeshan, S Chand & Co. Ltd
- 9) Schaum's Outline of Beginning Physics II | Waves, electromagnetism, Optics and Modern Physics, Alvin Halpern, Erich Erlbach, McGraw Hill.
- 10) Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd edition, Tata McGraw-Hill Publishing Co. Ltd.
- 11) Quantum Physics, Berkeley Physics, Vol.4. E. H. Wichman, 1971, Tata McGraw-Hill
- 12) Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 2004, Macmillan Publishers India Limited
- 13) Introduction to Quantum Mechanics, D. J. Griffith, 2005, Pearson Education
- 14) Concepts of nuclear physics, B. Cohen, 2003, McGraw-Hill Education
- 15) Atomic Physics, Ghoshal, 2019, S. Chand Publishing House

(5 Hours)

(5 Hours)

(5 Hours)

(7 Hours)

- 16) Atomic Physics, J. B. Rajam & foreword by Louis De Broglie, 2010, S. Chand & Co.
- 17) Nuclear Physics, S. N. Ghoshal, S. Chand Publishers
- 18) Atomic and Molecular Physics, Rajkumar, RBSA Publishers

Additional Readings:

- 1) Six Ideas that Shaped Physics: Particles Behave like Waves, T. A. Moore, 2003, McGraw Hill.
- 2) Thirty years that shook physics: The story of quantum theory, G. Gamow, Garden City, NY: Doubleday, 1966.

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

Mandatory activity:

- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab
- Familiarization with Schuster's focusing; determination of angle of prism.

At least six experiments to be performed from the following list

- 1) Measurement of Planck's constant using black body radiation and photo-detector
- 2) Photo-electric effect: photo current versus intensity and wavelength of light, maximum energy of photo-electrons versus frequency of light
- 3) To determine the work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs of at least 4 different colours.
- 5) To determine the wavelength of the H-alpha emission line of Hydrogen atoms.
- 6) To determine the ionization potential of mercury.
- 7) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 8) To show the tunneling effect in tunnel diodes using I-V characteristics.
- 9) To determine the wavelength of a laser source using diffraction of a single slit.
- 10) 10. To determine the wavelength of a laser source using diffraction of double slits.
- 11) 11. To determine angular spread of He-Ne laser using plane diffraction grating
- 12) One innovative experiment designed by the teacher relevant to the syllabus.

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11th edition, 2011, Kitab Mahal.
- 3) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th edition, reprinted, 1985, Heinemann Educational Publishers.
- 4) A Laboratory Manual of Physics For Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publisher.
- 5) B.Sc. Practical Physics, H. Singh, S Chand & Co Ltd
- 6) B.Sc. Practical Physics, G. Sanon, R. Chand and Co.

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 3: SEMICONDUCTOR DEVICES FABRICATION

Course Title &	Credits	Credit	distributi course	ion of the	Eligibility Criteria	Pre-requisite of the course
Code		Lecture	Tutorial	Practical		
Semiconductor Devices Fabrication	4	2	0	2	Appeared in Semester 4	
PHYSICS DSE 3						

LEARNING OBJECTIVES

This course provides a review of basics of semiconductors such as energy bands, doping, defects etc. and introduces students to various semiconductor and memory devices, thin film growth techniques and processes including various vacuum pumps, sputtering, evaporation, oxidation and VLSI processing are described in detail. By the end of the syllabus, students will have an understanding of MEMS based transducers.

LEARNING OUTCOMES

At the end of this course, students will be able to achieve the following learning outcomes.

- Learn to distinguish between single crystal, polycrystalline and amorphous materials based on their structural morphology and learn about the growth of single crystals of silicon, using Czochralski technique, on which a present day electronics and IT revolution is based.
- Students will understand about the various techniques of thin film growth and processes.
- Appreciate the various VLSI fabrication technologies and learn to design the basic fabrication process of R, C, P- N Junction diode, BJT, JFET, MESFET, MOS, NMOS, PMOS and CMOS technology.
- Gain basic knowledge on overview of MEMS (Micro-Electro-Mechanical System) and MEMS based transducers.

SYLLABUS OF PHYSICS DSE – 3

THEORY COMPONENT

Unit – I

Introduction: Review of energy bands in materials, metal, semiconductor and insulator, doping in semiconductors, defects (point, line, Schottky and Frenkel), single crystal, polycrystalline and amorphous materials, Czochralski technique for silicon single crystal growth, silicon wafer slicing and polishing.

Vacuum Pumps: Primary pump (mechanical) and secondary pumps (diffusion, turbomolecular, cryopump, sputter-ion) – basic working principle, throughput and characteristics in reference to pump selection, vacuum gauges (Pirani and Penning)

Unit – II

Thin film growth techniques and processes: Sputtering, evaporation (thermal, electron beam),

(9 Hours)

(10 Hours)

pulse laser deposition (PLD), chemical vapour deposition (CVD), epitaxial growth Thermal oxidation process (dry and wet) passivation, metallization, diffusion

Unit – III

VLSI Processing: Clean room classification, line width, photolithography: resolution and process, positive and negative shadow masks, photoresist, step coverage, developer, electron beam lithography, etching: wet etching, dry etching (RIE and DRIE), basic fabrication process of R, C, P-N Junction diode, BJT, JFET, MESFET, MOS, NMOS, PMOS and CMOS technology, wafer bonding, wafer cutting, wire bonding and packaging issues (qualitative idea)

Unit – IV

Micro Electro-Mechanical System (MEMS): Introduction to MEMS, materials selection for MEMS devices, selection of etchants, surface and bulk micromachining, sacrificial subtractive processes, additive processes, cantilever, membranes, general idea of MEMS based pressure, force, and capacitance transducers

References:

Essential Readings:

- 1) Physics of Semiconductor Devices, S. M. Sze. Wiley-Interscience.
- 2) Fundamentals of Semiconductor Fabrication, S.M. Sze and G. S. May, John-Wiley and Sons, Inc.
- 3) Introduction to Semiconductor materials and Devices, M. S. Tyagi, John Wiley & Sons
- 4) VLSI Fabrication Principles (Si and GaAs), S. K. Gandhi, John Wiley & Sons, Inc.

Additional Readings:

1) Handbook of Thin Film Technology, L. I. Maissel and R. Glang

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

At least six experiments to be performed from the following list

- 1) Deposition of thin films using dip coating and deposition of metal contacts using thermal Evaporation and study its IV characteristics
- 2) Deposition of thin films using spin coating and deposition of metal contacts using thermal evaporation and study its I-V characteristics
- 3) Fabrication of p-n Junction diode and study its I-V characteristics
- 4) Create vacuum in a small tube (preferably of different volumes) using a mechanical rotary pump and measure pressure using vacuum gauges.
- 5) Selective etching of different metallic thin films using suitable etchants of different concentrations.
- 6) Wet chemical etching of Si for MEMS applications using different concentration of etchant.
- 7) Calibrate semiconductor type temperature sensor (AD590, LM 35, LM 75)
- 8) To measure the resistivity of a semiconductor (Ge) crystal with temperature (up to 150C) by four-probe method.
- 9) To fabricate a ceramic and study its capacitance using LCR meter.
- 10) To fabricate a thin film capacitor using dielectric thin films and metal contacts and study its capacitance using LCR meter

(7 Hours)

(4 Hours)

- **References for laboratory work**: 1) The science and Engineering of Microelectronics Fabrication, S. A. Champbell, 2010, Oxford University Press
- 2) Introduction to Semiconductor Devices, F. Kelvin

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 4: ELECTRONICS INSTRUMENTATION

Course Title & Code	Credits	Credit	distributi course	on of the	Eligibility Criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical		
Electronics Instrumentation	4	2	0	2	Appeared in Semester 4	
Physics DSE 4						

LEARNING OBJECTIVES

This course aims to provide an exposure on basics of measurement and instrumentation and its various aspects and their usage through hands-on mode. It also aims to provide exposure of various measurement instruments such as power supply, oscilloscope, multivibrators, signal generators are also discussed. It also aims to develop an understanding of virtual instrumentation and transducers.

LEARNING OUTCOMES

At the end of this course, students will have understanding of,

- Basic principles of the measurement and errors in measurement, specifications of basic Measurement instruments and their significance with hands on mode.
- Principles of voltage measurement, advantages of electronic voltmeter over conventional multimeter in terms of sensitivity etc.
- Measurement of impedance using bridges, Power supply, Filters, IC regulators and Load and line regulation.
- Specifications of CRO and their significance, the use of CRO and DSO for the measurement of voltage (dc and ac), frequency and time period.
- Multivibrators, working circuits of astable and monostable multivibrators.
- Explanation and specifications of Signal and pulse Generators
- The Interfacing techniques, Arduino microcontroller and interfacing software,
- Understanding and usage of transducers

SYLLABUS OF PHYSICS DSE 4

THEORY COMPONENT

Unit – I

Measurements: Shielding and grounding, electromagnetic interference

Basic Measurement Instruments: DC measurement-ammeter, voltmeter, ohm meter, AC measurement, digital voltmeter systems (integrating and non-integrating), digital multimeter, block diagram, principle of measurement of I, V, C, measurement of impedance - A.C. bridges, measurement of self-inductance (Anderson's bridge), measurement of capacitance (De-Sauty's bridge), measurement of frequency (Wien's bridge)

Unit - II

Power supply: Using IC regulators (78XX and 79XX), line and load regulation, short circuit

(6 Hours)

(12 Hours)

protection, idea of switched mode power supply (SMPS) and uninterrupted power supply (UPS)

Oscilloscope: Block diagram, CRT, deflection (qualitative), screens for CRT, oscilloscope probes, measurement of voltage, frequency, and phase by oscilloscope, digital storage oscilloscope

Unit – III

Multivibrators (IC 555): Block diagram, astable and monostable multivibrator circuits Signal Generators: Function generator (black box approach)

Unit – IV

Virtual Instrumentation: Introduction, interfacing techniques (RS 232, GPIB, USB), idea about Arduino microcontroller and interfacing software like lab View

Transducers: Classification of transducers, measurement of temperature (RTD, semiconductor IC sensors), light transducers (photo resistors and photovoltaic cells)

References:

Essential Readings:

- 1) Electronic Instrumentation and Measurement Techniques, W. D. Cooper and A. D. Helfrick, 2005, Prentice Hall
- Measurement Systems: Application and Design, E. O. Doebelin, 5th edition, 2003, McGraw Hill Book
- 3) Electronic Devices and Circuits, D. A. Bell, 2015, Oxford University Press

Additional Readings:

1) Instrumentation Devices and Systems, S. Rangan, G. R. Sarma and V. S. Mani, 1998, Tata McGraw Hill

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the lab, including necessary precautions.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab."

At least eight experiments to be performed from the following list

- 1) Measurement of resistance by Wheatstone bridge and measurement of bridge sensitivity.
- 2) Measurement of Capacitance by De Sauty's bridge.
- 3) Design a regulated power supply of given rating (5 V or 9V).
- 4) To determine the Characteristics of Thermistors and RTD.
- 5) Measurement of temperature by Thermocouples.
- 6) To design an astable multivibrator of given specification using IC 555 Timer.
- 7) To design a monostable multivibrator of given specification using IC 555 Timer.
- 8) To design and study the sample and hold circuit.
- 9) To plot the frequency response of a microphone.
- 10) Glow an LED via USB port of PC.
- 11) Sense the input voltage at a pin of USB port and subsequently glow the LED connected with another pin of USB port.

(3 Hours)

(9 Hours)

- 1) Measurement and Instrumentation Principles, A. S. Morris, 2008, Elsevier (Butterworth Heinmann)
- 2) Basic Electronics: A text lab manual, P. B. Zbar, A. P. Malvino and M. A. Miller, 1990, Mc-Graw Hill

DISCIPLINE SPECIFIC ELECTIVE COURSE – PHYSICS DSE 5: DIGITAL SIGNAL PROCESSING

Course Title & Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical	Criteria	of the course
Digital Signal Processing	4	2	0	2	Appeared in Semester 4	
Physics DSE 5						

LEARNING OBJECTIVES

This paper describes the discrete-time signals and systems, Fourier transform representation of aperiodic discrete time signals. This paper also highlights the concept of filters and realization of digital filters. At the end of the syllabus, students will develop an understanding of discrete and fast Fourier transform.

LEARNING OUTCOMES

At the end of this course, students will be able to develop following learning outcomes.

- Students will learn basic discrete-time signal and system types, convolution sum, impulse and frequency response concepts for linear time-invariant (LTI) systems.
- The student will be in position to understand use of different transforms and analyse the discrete time signals and systems. They will learn to analyse a digital system using z-transforms and discrete time Fourier transforms, region of convergence concepts, their properties and perform simple transform calculations.
- The student will realize the use of LTI filters for filtering different real world signals. The concept of transfer Function and difference-equation system will be introduced. Also, they will learn to solve difference equations.
- Students will develop an ability to analyse DSP systems like linear-phase, FIR, IIR, All-pass, averaging and notch Filter etc.
- Students will be able to understand the discrete Fourier transform (DFT) and realize its implementation using FFT techniques.
- Students will be able to learn the realization of digital filters, their structures, along with their advantages and disadvantages. They will be able to design and understand different types of digital filters such as finite and infinite impulse response filters for various applications.

SYLLABUS OF PHYSICS DSE 5

THEORY COMPONENT

Unit – I

(7 Hours)

Discrete-Time Signals and Systems: Classification of signals, transformations of the independent variable, periodic and aperiodic signals, energy and power signals, even and odd signals, discrete time systems, system properties, impulse response, convolution sum, graphical and analytical method, properties of convolution (general idea), sum property system response to periodic inputs, relationship between LTI system properties and the

impulse response

Unit – II

(9 Hours) Discrete time Fourier transform: Fourier transform representation of aperiodic discrete time signals, periodicity of DTFT, properties; linearity; time shifting; frequency shifting; differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property. The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z- Transform, Relationship Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence; Differentiation in the z-Domain; Power Series Expansion Method (General Idea). Transfer Function and Difference-Equation System.

Unit – III

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR Digital Filters. Only Qualitative treatment

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting; Circular Time Reversal; Multiplication Property; Parseval's Relation (General Idea), Linear Convolution Using the DFT (Linear Convolution Using Circular Convolution).

Unit – IV

(4 Hours)

(10 Hours)

Realization of Digital Filters: FIR Filter structures; Direct-Form; Cascade-Form Finite Impulse Response Digital Filter: Advantages and Disadvantages of Digital Filters, Types of Digital Filters: FIR Filters

References:

Essential Readings:

- 1) Digital Signal Processing, T. K. Rawat, 2015, Oxford University Press, India
- 2) Digital Signal Processing, S. K. Mitra, McGraw Hill, India.
- 3) Principles of Signal Processing and Linear Systems, B. P. Lathi, 1st edition, 2009, Oxford University Press.
- 4) Fundamentals of signals and systems, P.D. Cha and J.I. Molinder, 2007, Cambridge University Press
- 5) Digital Signal Processing Principles Algorithm & Applications, J. G. Proakis and D. G. Manolakis, 4th edition, 2007, Prentice Hall.

Additional Readings:

- 1) Digital Signal Processing, A. Kumar, 2nd edition, 2016, PHI learning Private Limited.
- 2) Digital Signal Processing, P. S. R. Diniz, E. A. B. da Silva and S. L. Netto, 2nd edition, 2017, Cambridge University Press

PRACTICAL COMPONENT

(15 Weeks with 4 hours of laboratory session per week)

- Introduction to numerical computation software Scilab/Matlab/Python be introduced in the lab.
- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab"

At least six experiments to be performed from the following using Scilab/Matlab/Python

- 1) Write a program to generate and plot the following sequences: (a) Unit sample sequence $\delta(n)$, (b) unit step sequence u(n), (c) ramp sequence r(n), (d) real valued exponential sequence $x(n) = (0.8)^n u(n)$ for $0 \le n \le 50$.
- 2) Write a program to compute the convolution sum of a rectangle signal (or gate function) with itself for N = 5

$$x(n) = rect\left(\frac{n}{2N}\right) = \prod \left(\frac{n}{2N}\right) = \{1 - N \le n \le N \ 0 \ otherwise$$

3) An LTI system is specified by the difference equation y(n)=0.8y(n-1)+x(n)
(a)Determine H(e^{iw})

(b) Calculate and plot the steady state response y(n) to $x(n) = \cos \cos (0.5\pi n) u(n)$

- 4) Given a casual system y(n)=0.9y(n-1)+x(n)
 - (a) Find H(z) and sketch its pole-zero plot
 - (b) Plot the frequency response $|H(e^{jw})|$ and $\angle H(e^{jw})$
- 5) Design a digital filter to eliminate the lower frequency sinusoid of x(t)=sin7t+sin200t. The sampling frequency is 500 Hz. Plot its pole zero diagram, magnitude response, input and output of the filter.
- 6) Let x(n) be a 4-point sequence:

$$x(n) = \{1,1,1,1\} = \{1 \ 0 \le n \le 3 \ 0 \ otherwise$$

1

Compute the DTFT $X(e^{jw})$ and plot its magnitude

- (a) Compute and plot the 4 point DFT of *x*(*n*)
- (b) Compute and plot the 8 point DFT of *x*(*n*) (by appending 4 zeros)
- (c) Compute and plot the 16 point DFT of *x*(*n*) (by appending 12 zeros)

7) Let x(n) and h(n) be the two 4-point sequences,

$$x(n) = \{1, 2, 2, 1\}$$

 $h(n) = \{1, -1, -1, 1\}$

Write a program to compute their linear convolution using circular convolution.

- 8) Using a rectangular window, design a FIR low-pass filter with a pass-band gain of unity, cut off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 17.
- 9) Design an FIR filter to meet the following specifications:
 - Passband edge $F_p=2$ KHz Stopband edge $F_s=5$ KHz Passband attenuation $A_p=2$ dB

Stopband attenuation As=42 dB

Sampling frequency Fsf=20 KHz

10) The frequency response of a linear phase digital differentiator is given by

$$H_d(e^{jw}) = jwe^{-j\tau w} |w| \le \pi$$

Using a Hamming window of length M = 21, design a digital FIR differentiator. Plot the amplitude response

- 1) A Guide to MATLAB, B. R. Hunt, R. L. Lipsman and J. M. Rosenberg, 3rd edition, 2014, Cambridge University Press.
- 2) Fundamentals of Digital Signal processing using MATLAB, R. J. Schilling and S. L. Harris, 2005, Cengage Learning.
- 3) Getting started with MATLAB, R. Pratap, 2010, Oxford University Press.